YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Radiation Monitoring for Volatilized Zinc Contamination Using Gamma-Ray Imaging and Spectroscopy

    Source: Journal of Nuclear Engineering and Radiation Science:;2024:;volume( 011 ):;issue: 002::page 22001-1
    Author:
    Nwadeyi, Valerie E.
    ,
    Judy, Adam
    ,
    Whiteside, Tad
    DOI: 10.1115/1.4066342
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Gamma-ray imaging is a tool that has grown in importance in the applications of non-destructive assay (NDA) for radioactive survey and analysis of nuclear facilities. Imaging techniques have shown great promise in providing valuable information involving radioactive waste management and contamination prevention. For the application studied in this work, 65Zn has been identified as a radioactive contaminant during tritium extraction. Due to the volatile nature of 65Zn under the pressure and temperature changes during extraction operations, 65Zn can easily travel through components of the extraction system as vapor, making it difficult to trap. Previous research involving the development of a filtration system showed that the 65Zn can be trapped, mitigating product contamination. However, during the extraction process, direct analysis of the equipment to confirm that zinc contamination is trapped in the filter and has not spread to other components is impractical. In this situation, the need to assay the location of the contamination with little-to-no interference with operations is vital. In this work, we demonstrate the use of a commercialized 3D position-sensitive CdZnTe (CZT) gamma-ray imaging spectrometer to provide analysis of the 65Zn contamination. Onsite measurements during an extraction process are studied to assess the location and migration of the 65Zn. The results obtained from real-time glovebox monitoring demonstrate the feasibility of gamma-ray imaging for localizing the contamination and providing a preliminary qualitative assessment that is intended to be used in future work quantifying the contamination build-up and activity over time.
    • Download: (1.578Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Radiation Monitoring for Volatilized Zinc Contamination Using Gamma-Ray Imaging and Spectroscopy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306201
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorNwadeyi, Valerie E.
    contributor authorJudy, Adam
    contributor authorWhiteside, Tad
    date accessioned2025-04-21T10:26:25Z
    date available2025-04-21T10:26:25Z
    date copyright10/8/2024 12:00:00 AM
    date issued2024
    identifier issn2332-8983
    identifier otherners_011_02_022001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306201
    description abstractGamma-ray imaging is a tool that has grown in importance in the applications of non-destructive assay (NDA) for radioactive survey and analysis of nuclear facilities. Imaging techniques have shown great promise in providing valuable information involving radioactive waste management and contamination prevention. For the application studied in this work, 65Zn has been identified as a radioactive contaminant during tritium extraction. Due to the volatile nature of 65Zn under the pressure and temperature changes during extraction operations, 65Zn can easily travel through components of the extraction system as vapor, making it difficult to trap. Previous research involving the development of a filtration system showed that the 65Zn can be trapped, mitigating product contamination. However, during the extraction process, direct analysis of the equipment to confirm that zinc contamination is trapped in the filter and has not spread to other components is impractical. In this situation, the need to assay the location of the contamination with little-to-no interference with operations is vital. In this work, we demonstrate the use of a commercialized 3D position-sensitive CdZnTe (CZT) gamma-ray imaging spectrometer to provide analysis of the 65Zn contamination. Onsite measurements during an extraction process are studied to assess the location and migration of the 65Zn. The results obtained from real-time glovebox monitoring demonstrate the feasibility of gamma-ray imaging for localizing the contamination and providing a preliminary qualitative assessment that is intended to be used in future work quantifying the contamination build-up and activity over time.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRadiation Monitoring for Volatilized Zinc Contamination Using Gamma-Ray Imaging and Spectroscopy
    typeJournal Paper
    journal volume11
    journal issue2
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4066342
    journal fristpage22001-1
    journal lastpage22001-6
    page6
    treeJournal of Nuclear Engineering and Radiation Science:;2024:;volume( 011 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian