YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Localized Manipulation of Martensite Transformation in Double-Sided Incremental Forming by Varying the Deformation Path

    Source: Journal of Manufacturing Science and Engineering:;2024:;volume( 146 ):;issue: 011::page 110906-1
    Author:
    Darzi, Shayan
    ,
    Tulung, Enrico
    ,
    Kinsey, Brad L.
    ,
    Ha, Jinjin
    DOI: 10.1115/1.4066123
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Incremental sheet metal forming is known for its high flexibility, making it suitable for fabricating low-batch, highly customized complex parts. In this article, a localized multipass toolpath referred to as localized reforming, with reverse forming in a region of interest, is employed within the double-sided incremental forming (DSIF) process to manipulate the mechanical properties of a truncated pyramid formed from austenitic stainless steel sheet, SS304, through deformation-induced martensite transformation. DSIF forms a clamped sheet through localized deformations by two opposing tools. The toolpath effect in localized reforming is examined in terms of martensite transformation, geometrical accuracy, and thickness distribution. The results are compared with a conventional toolpath, i.e., forming in a single pass. The results show that varying toolpaths lead to different martensite transformation levels, while final geometry and thickness remain similar. The study demonstrates that localized reforming significantly increases martensite transformation in the specified region, i.e., the center of the pyramid wall, to ∼70%, with a martensite fraction remaining around 25% elsewhere. In comparison, using a single pass forming toolpath leads to a decreasing martensite fraction from the base of the pyramid toward the apex, due to the heat generated, with values <10% along the entire wall. Through finite element simulation, it is shown that the increase in martensite transformation of the region of interest is with the plastic deformation accumulation during the reverse pass. These findings highlight the potential to tailor mechanical properties in specific areas using a reforming toolpath in DSIF.
    • Download: (1.459Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Localized Manipulation of Martensite Transformation in Double-Sided Incremental Forming by Varying the Deformation Path

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306170
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorDarzi, Shayan
    contributor authorTulung, Enrico
    contributor authorKinsey, Brad L.
    contributor authorHa, Jinjin
    date accessioned2025-04-21T10:25:38Z
    date available2025-04-21T10:25:38Z
    date copyright9/11/2024 12:00:00 AM
    date issued2024
    identifier issn1087-1357
    identifier othermanu_146_11_110906.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306170
    description abstractIncremental sheet metal forming is known for its high flexibility, making it suitable for fabricating low-batch, highly customized complex parts. In this article, a localized multipass toolpath referred to as localized reforming, with reverse forming in a region of interest, is employed within the double-sided incremental forming (DSIF) process to manipulate the mechanical properties of a truncated pyramid formed from austenitic stainless steel sheet, SS304, through deformation-induced martensite transformation. DSIF forms a clamped sheet through localized deformations by two opposing tools. The toolpath effect in localized reforming is examined in terms of martensite transformation, geometrical accuracy, and thickness distribution. The results are compared with a conventional toolpath, i.e., forming in a single pass. The results show that varying toolpaths lead to different martensite transformation levels, while final geometry and thickness remain similar. The study demonstrates that localized reforming significantly increases martensite transformation in the specified region, i.e., the center of the pyramid wall, to ∼70%, with a martensite fraction remaining around 25% elsewhere. In comparison, using a single pass forming toolpath leads to a decreasing martensite fraction from the base of the pyramid toward the apex, due to the heat generated, with values <10% along the entire wall. Through finite element simulation, it is shown that the increase in martensite transformation of the region of interest is with the plastic deformation accumulation during the reverse pass. These findings highlight the potential to tailor mechanical properties in specific areas using a reforming toolpath in DSIF.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLocalized Manipulation of Martensite Transformation in Double-Sided Incremental Forming by Varying the Deformation Path
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4066123
    journal fristpage110906-1
    journal lastpage110906-10
    page10
    treeJournal of Manufacturing Science and Engineering:;2024:;volume( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian