YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characterization of Particulate Emissions From Thermal Runaway of Lithium-Ion Cells

    Source: Journal of Electrochemical Energy Conversion and Storage:;2024:;volume( 022 ):;issue: 003::page 31002-1
    Author:
    Premnath, Vinay
    ,
    Parhizi, Mohammad
    ,
    Niemiec, Nicholas
    ,
    Smith, Ian
    ,
    Jeevarajan, Judith
    DOI: 10.1115/1.4065938
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Over the past decade, there has been a significant acceleration in the adoption of lithium-ion (Li-ion) batteries for various applications, ranging from portable electronics to automotive, defense, and aerospace applications. Lithium-ion batteries are the most used energy storage technologies due to their high energy densities and capacities. However, this battery technology is a potential safety hazard under off-nominal conditions, which may result in thermal runaway events. Such events can release toxic gaseous and particulate emissions, posing a severe risk to human health and the environment. Particulate emissions from the failure of two different cell chemistries—lithium iron phosphate (LFP) and nickel manganese cobalt oxide (NMC)—were studied. Experiments were conducted at multiple states of charge (SOC), and three repeats were performed at each SOC for each cell chemistry to examine the repeatability/variability of these events. Particulate emissions were characterized in terms of particulate matter mass (PM2.5), black carbon, and particle number (PN)/size. Failure of a single cell led to a significant release of particulate emissions, with peak emission levels being higher at the higher SOCs. A high level of variability was observed for a specific SOC for LFP cells, while NMCs exhibited relatively less variability. In general, much higher particulate emissions were observed for NMCs compared to LFPs at each SOC. For NMCs at 100% SOC, peak PN levels were ∼2.5 × 10+09 particles/cc (part/cc), and black carbon levels were ∼60 mg/m3. For LFPs at 100% SOC, peak PN levels were ∼9.0 × 10+08 part/cc, and black carbon levels were 2.5 mg/m3.
    • Download: (1.256Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characterization of Particulate Emissions From Thermal Runaway of Lithium-Ion Cells

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4306137
    Collections
    • Journal of Electrochemical Energy Conversion and Storage

    Show full item record

    contributor authorPremnath, Vinay
    contributor authorParhizi, Mohammad
    contributor authorNiemiec, Nicholas
    contributor authorSmith, Ian
    contributor authorJeevarajan, Judith
    date accessioned2025-04-21T10:24:44Z
    date available2025-04-21T10:24:44Z
    date copyright8/6/2024 12:00:00 AM
    date issued2024
    identifier issn2381-6872
    identifier otherjeecs_22_3_031002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4306137
    description abstractOver the past decade, there has been a significant acceleration in the adoption of lithium-ion (Li-ion) batteries for various applications, ranging from portable electronics to automotive, defense, and aerospace applications. Lithium-ion batteries are the most used energy storage technologies due to their high energy densities and capacities. However, this battery technology is a potential safety hazard under off-nominal conditions, which may result in thermal runaway events. Such events can release toxic gaseous and particulate emissions, posing a severe risk to human health and the environment. Particulate emissions from the failure of two different cell chemistries—lithium iron phosphate (LFP) and nickel manganese cobalt oxide (NMC)—were studied. Experiments were conducted at multiple states of charge (SOC), and three repeats were performed at each SOC for each cell chemistry to examine the repeatability/variability of these events. Particulate emissions were characterized in terms of particulate matter mass (PM2.5), black carbon, and particle number (PN)/size. Failure of a single cell led to a significant release of particulate emissions, with peak emission levels being higher at the higher SOCs. A high level of variability was observed for a specific SOC for LFP cells, while NMCs exhibited relatively less variability. In general, much higher particulate emissions were observed for NMCs compared to LFPs at each SOC. For NMCs at 100% SOC, peak PN levels were ∼2.5 × 10+09 particles/cc (part/cc), and black carbon levels were ∼60 mg/m3. For LFPs at 100% SOC, peak PN levels were ∼9.0 × 10+08 part/cc, and black carbon levels were 2.5 mg/m3.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCharacterization of Particulate Emissions From Thermal Runaway of Lithium-Ion Cells
    typeJournal Paper
    journal volume22
    journal issue3
    journal titleJournal of Electrochemical Energy Conversion and Storage
    identifier doi10.1115/1.4065938
    journal fristpage31002-1
    journal lastpage31002-10
    page10
    treeJournal of Electrochemical Energy Conversion and Storage:;2024:;volume( 022 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian