YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Simulation Investigation of J-Shaped and Kammtail Virtual Airfoils in Small-Scale Horizontal Axis Wind Turbines

    Source: Journal of Fluids Engineering:;2024:;volume( 147 ):;issue: 003::page 31102-1
    Author:
    Al Hamad, Saif
    ,
    Abousabae, Mohamed
    ,
    Shaker, Omar
    ,
    Amano, Ryoichi S.
    DOI: 10.1115/1.4067119
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this work, the performance of new wind blade designs for small-scale horizontal axis wind turbines (HAWTs) was studied and compared with the performance of a baseline design. Three J-shaped pressure-side truncation ratios (1/3, 1/2, and 2/3) and two Kammtail Virtual Foil (KVF) truncation ratios (1/8 and 1/4) were studied. The baseline design was experimentally investigated. Output power was measured using a digital rotary torque sensor at three different wind speeds. Tip speed ratio (TSR) was calculated after measuring each wind speed's free-rotating revolutions per minute (RPM). Three wind speeds and experimental TSRs were used in three-dimensional simulations to capture the performances of the proposed cases and compare them with the baseline. The simulation investigation was carried out for lab-scale and scaled cases. The three-dimensional study found that the J-shaped blades enhanced the performance of the HAWTs for both lab-scale and scaled cases. J-shaped blades with a 1/3 opening ratio yielded an average power coefficient enhancement of around 1.56% and 4.16% for lab-scale and scaled cases, respectively. J-shaped blades with a 1/2 opening ratio yielded an average power coefficient enhancement of around 1.15% and 4.23% for lab-scale and scaled cases, respectively. On the other hand, J-shaped blades with a 2/3 opening ratio yielded an average power coefficient enhancement of around −0.12% and 2.54% for lab-scale and scaled cases, respectively. Furthermore, it was found that the KVF blades diminished the performance for both lab-scale and scaled cases.
    • Download: (2.484Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Simulation Investigation of J-Shaped and Kammtail Virtual Airfoils in Small-Scale Horizontal Axis Wind Turbines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305858
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorAl Hamad, Saif
    contributor authorAbousabae, Mohamed
    contributor authorShaker, Omar
    contributor authorAmano, Ryoichi S.
    date accessioned2025-04-21T10:16:45Z
    date available2025-04-21T10:16:45Z
    date copyright11/27/2024 12:00:00 AM
    date issued2024
    identifier issn0098-2202
    identifier otherfe_147_03_031102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305858
    description abstractIn this work, the performance of new wind blade designs for small-scale horizontal axis wind turbines (HAWTs) was studied and compared with the performance of a baseline design. Three J-shaped pressure-side truncation ratios (1/3, 1/2, and 2/3) and two Kammtail Virtual Foil (KVF) truncation ratios (1/8 and 1/4) were studied. The baseline design was experimentally investigated. Output power was measured using a digital rotary torque sensor at three different wind speeds. Tip speed ratio (TSR) was calculated after measuring each wind speed's free-rotating revolutions per minute (RPM). Three wind speeds and experimental TSRs were used in three-dimensional simulations to capture the performances of the proposed cases and compare them with the baseline. The simulation investigation was carried out for lab-scale and scaled cases. The three-dimensional study found that the J-shaped blades enhanced the performance of the HAWTs for both lab-scale and scaled cases. J-shaped blades with a 1/3 opening ratio yielded an average power coefficient enhancement of around 1.56% and 4.16% for lab-scale and scaled cases, respectively. J-shaped blades with a 1/2 opening ratio yielded an average power coefficient enhancement of around 1.15% and 4.23% for lab-scale and scaled cases, respectively. On the other hand, J-shaped blades with a 2/3 opening ratio yielded an average power coefficient enhancement of around −0.12% and 2.54% for lab-scale and scaled cases, respectively. Furthermore, it was found that the KVF blades diminished the performance for both lab-scale and scaled cases.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental and Simulation Investigation of J-Shaped and Kammtail Virtual Airfoils in Small-Scale Horizontal Axis Wind Turbines
    typeJournal Paper
    journal volume147
    journal issue3
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4067119
    journal fristpage31102-1
    journal lastpage31102-9
    page9
    treeJournal of Fluids Engineering:;2024:;volume( 147 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian