YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Gaidai Risk Evaluation Method for Lifetime Assessment for Offshore Floating Wind Turbine Gearbox

    Source: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems:;2024:;volume( 008 ):;issue: 002::page 21005-1
    Author:
    Gaidai, Oleg
    DOI: 10.1115/1.4066410
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Renewable clean energy in some cases may be viewed as an alternative to limited fossil resources. Offshore floating wind turbines (FWTs) are among the most attractive green alternatives. However, FWTs, in particular their essential components, may sustain structural damages from cyclic loads brought on by torque, bending, longitudinal loadings, as well as twisting moments. Multibody simulation tool SIMPACK was utilized to assess structural bending moments and internal forces occurring within the FWT drivetrain during its field operation. The novel risk and damage evaluation method advocated in the current study is intended to serve contemporary FWT design, enabling accurate assessments of structural lifespan distribution, given in situ environmental/field conditions. The approach described in the current study may be utilized to analyze complex multidimensional sustainable energy systems, subjected to excessive stressors during their intended service life. Contemporary risk evaluation approaches, dealing with complex energy systems are not always well-suited for handling dynamic system's high dimensionality, aggravated by nonlinear cross-correlations between structural components, subjected to dynamic nonlinear nonstationary loadings. The current study advocates a novel general-purpose lifetime assessment methodology, having a wide area of potential engineering and design applications, not limited to offshore wind/wave renewable energy systems. Key advantages of the advocated methodology lie within its robust ability to assess damage risks of complex energy and environmental systems, with a virtually unlimited number of system components (dimensions), along with the further potential to incorporate nonlinear cross-correlations between system components in real time. Note that to the author's knowledge, there are no comparable risk evaluation methods that can deal with the system's high dimensionality, utilizing raw/unfiltered simulated/measured datasets, beyond one or two-dimensional dynamic systems—except for computationally expensive direct Monte Carlo (MC) simulations.
    • Download: (715.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Gaidai Risk Evaluation Method for Lifetime Assessment for Offshore Floating Wind Turbine Gearbox

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305807
    Collections
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems

    Show full item record

    contributor authorGaidai, Oleg
    date accessioned2025-04-21T10:15:19Z
    date available2025-04-21T10:15:19Z
    date copyright9/11/2024 12:00:00 AM
    date issued2024
    identifier issn2572-3901
    identifier othernde_8_2_021005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305807
    description abstractRenewable clean energy in some cases may be viewed as an alternative to limited fossil resources. Offshore floating wind turbines (FWTs) are among the most attractive green alternatives. However, FWTs, in particular their essential components, may sustain structural damages from cyclic loads brought on by torque, bending, longitudinal loadings, as well as twisting moments. Multibody simulation tool SIMPACK was utilized to assess structural bending moments and internal forces occurring within the FWT drivetrain during its field operation. The novel risk and damage evaluation method advocated in the current study is intended to serve contemporary FWT design, enabling accurate assessments of structural lifespan distribution, given in situ environmental/field conditions. The approach described in the current study may be utilized to analyze complex multidimensional sustainable energy systems, subjected to excessive stressors during their intended service life. Contemporary risk evaluation approaches, dealing with complex energy systems are not always well-suited for handling dynamic system's high dimensionality, aggravated by nonlinear cross-correlations between structural components, subjected to dynamic nonlinear nonstationary loadings. The current study advocates a novel general-purpose lifetime assessment methodology, having a wide area of potential engineering and design applications, not limited to offshore wind/wave renewable energy systems. Key advantages of the advocated methodology lie within its robust ability to assess damage risks of complex energy and environmental systems, with a virtually unlimited number of system components (dimensions), along with the further potential to incorporate nonlinear cross-correlations between system components in real time. Note that to the author's knowledge, there are no comparable risk evaluation methods that can deal with the system's high dimensionality, utilizing raw/unfiltered simulated/measured datasets, beyond one or two-dimensional dynamic systems—except for computationally expensive direct Monte Carlo (MC) simulations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGaidai Risk Evaluation Method for Lifetime Assessment for Offshore Floating Wind Turbine Gearbox
    typeJournal Paper
    journal volume8
    journal issue2
    journal titleJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    identifier doi10.1115/1.4066410
    journal fristpage21005-1
    journal lastpage21005-8
    page8
    treeJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems:;2024:;volume( 008 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian