YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data Augmentation Based on Image Translation for Bayesian Inference-Based Damage Diagnostics of Miter Gates

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 011 ):;issue: 001::page 11103-1
    Author:
    Zeng, Yichao
    ,
    Zeng, Jice
    ,
    Todd, Michael D.
    ,
    Hu, Zhen
    DOI: 10.1115/1.4065755
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Structural health monitoring (SHM) data is the essential foundation for any SHM structural integrity assessment, including large civil infrastructure such as the miter gate application in this work. For some applications, the amount of monitoring data is limited due to various reasons such as a lack of sensor deployment investment, sensor reliability, inaccessibility of measurement locations, expensive duty cycles, etc. This limited data could result in uncertainty in structural health assessment. This paper addresses this challenging issue by proposing a data augmentation method based on image translation for Bayesian inference-based damage diagnostics. In particular, we translate the monitoring data of one miter gate to that of another, thereby increasing the volume of monitoring data available for assessing the structural health of a target miter gate. This translation starts with converting the monitoring data of different miter gates into images. After that, Cycle Generative Adversarial Networks (CycleGAN) are employed to accomplish the task of image translation among different miter gates. A verification method is developed to verify the accuracy of the translated images (i.e., synthetic monitoring data). After the accuracy verification, the translated images are used together with the true monitoring data for damage diagnostics. Two types of CycleGAN architectures are investigated and compared using a case study. Results of the case study show that the proposed data augmentation method can effectively improve the accuracy and confidence of damage diagnostics of miter gates. It demonstrates the potential of integrating synthetic data generation with probabilistic model updating in structural health monitoring.
    • Download: (7.046Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data Augmentation Based on Image Translation for Bayesian Inference-Based Damage Diagnostics of Miter Gates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305638
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorZeng, Yichao
    contributor authorZeng, Jice
    contributor authorTodd, Michael D.
    contributor authorHu, Zhen
    date accessioned2025-04-21T10:10:18Z
    date available2025-04-21T10:10:18Z
    date copyright7/26/2024 12:00:00 AM
    date issued2024
    identifier issn2332-9017
    identifier otherrisk_011_01_011103.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305638
    description abstractStructural health monitoring (SHM) data is the essential foundation for any SHM structural integrity assessment, including large civil infrastructure such as the miter gate application in this work. For some applications, the amount of monitoring data is limited due to various reasons such as a lack of sensor deployment investment, sensor reliability, inaccessibility of measurement locations, expensive duty cycles, etc. This limited data could result in uncertainty in structural health assessment. This paper addresses this challenging issue by proposing a data augmentation method based on image translation for Bayesian inference-based damage diagnostics. In particular, we translate the monitoring data of one miter gate to that of another, thereby increasing the volume of monitoring data available for assessing the structural health of a target miter gate. This translation starts with converting the monitoring data of different miter gates into images. After that, Cycle Generative Adversarial Networks (CycleGAN) are employed to accomplish the task of image translation among different miter gates. A verification method is developed to verify the accuracy of the translated images (i.e., synthetic monitoring data). After the accuracy verification, the translated images are used together with the true monitoring data for damage diagnostics. Two types of CycleGAN architectures are investigated and compared using a case study. Results of the case study show that the proposed data augmentation method can effectively improve the accuracy and confidence of damage diagnostics of miter gates. It demonstrates the potential of integrating synthetic data generation with probabilistic model updating in structural health monitoring.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleData Augmentation Based on Image Translation for Bayesian Inference-Based Damage Diagnostics of Miter Gates
    typeJournal Paper
    journal volume11
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    identifier doi10.1115/1.4065755
    journal fristpage11103-1
    journal lastpage11103-18
    page18
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 011 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian