Design and Mechanical Validation of Commercially Viable, Personalized Passive Prosthetic FeetSource: Journal of Mechanical Design:;2024:;volume( 147 ):;issue: 003::page 35001-1DOI: 10.1115/1.4064073Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Current high-performance prosthetic feet work well for many users, but the low resolution of size and stiffness categories may limit walking performance for certain users. A line of prosthetic feet with a high resolution of sizes and stiffnesses, designed through amputee-specific personalization, could provide clinical and economic value. The lower leg trajectory error (LLTE) design framework facilitates the design of high-performance, amputee-specific prosthetic feet; however, previous foot prototypes were not designed to satisfy the economic, mechanical, and aesthetic requirements for commercial adoption. The aims of this work were to understand how a personalized, affordable prosthetic foot can align with the clinical-commercial ecosystem, innovate a viable future product, and inform other prosthesis designers of considerations required to connect innovation to real-world implementation. We evaluated needs by identifying how products, capital, and services flow between stakeholders, and we elucidated design requirements for a personalized prosthetic foot that can be manufactured, distributed, and clinically provided. Based on material properties and manufacturing process capabilities, computer numerically controlled (CNC) machining of Nylon 6/6 satisfies these requirements. We present a novel parametric foot architecture that can be CNC machined, fits within a commercial foot shell, and can be designed for individual users’ body characteristics and activity levels. Prototypes made using the new foot design behaved as anticipated (1–12% error in modeled displacement), satisfied industry-standard strength (ISO 10328) and mechanical performance (AOPA dynamic heel/keel) requirements, and elicited positive feedback from both amputees and prosthetists.
|
Collections
Show full item record
contributor author | Folinus, Charlotte | |
contributor author | Winter, V, Amos G. | |
date accessioned | 2025-04-21T10:07:55Z | |
date available | 2025-04-21T10:07:55Z | |
date copyright | 10/18/2024 12:00:00 AM | |
date issued | 2024 | |
identifier issn | 1050-0472 | |
identifier other | md_147_3_035001.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4305560 | |
description abstract | Current high-performance prosthetic feet work well for many users, but the low resolution of size and stiffness categories may limit walking performance for certain users. A line of prosthetic feet with a high resolution of sizes and stiffnesses, designed through amputee-specific personalization, could provide clinical and economic value. The lower leg trajectory error (LLTE) design framework facilitates the design of high-performance, amputee-specific prosthetic feet; however, previous foot prototypes were not designed to satisfy the economic, mechanical, and aesthetic requirements for commercial adoption. The aims of this work were to understand how a personalized, affordable prosthetic foot can align with the clinical-commercial ecosystem, innovate a viable future product, and inform other prosthesis designers of considerations required to connect innovation to real-world implementation. We evaluated needs by identifying how products, capital, and services flow between stakeholders, and we elucidated design requirements for a personalized prosthetic foot that can be manufactured, distributed, and clinically provided. Based on material properties and manufacturing process capabilities, computer numerically controlled (CNC) machining of Nylon 6/6 satisfies these requirements. We present a novel parametric foot architecture that can be CNC machined, fits within a commercial foot shell, and can be designed for individual users’ body characteristics and activity levels. Prototypes made using the new foot design behaved as anticipated (1–12% error in modeled displacement), satisfied industry-standard strength (ISO 10328) and mechanical performance (AOPA dynamic heel/keel) requirements, and elicited positive feedback from both amputees and prosthetists. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Design and Mechanical Validation of Commercially Viable, Personalized Passive Prosthetic Feet | |
type | Journal Paper | |
journal volume | 147 | |
journal issue | 3 | |
journal title | Journal of Mechanical Design | |
identifier doi | 10.1115/1.4064073 | |
journal fristpage | 35001-1 | |
journal lastpage | 35001-16 | |
page | 16 | |
tree | Journal of Mechanical Design:;2024:;volume( 147 ):;issue: 003 | |
contenttype | Fulltext |