YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Precursor Damage Quantification in Composite Structures Using Coda Wave Interferometry and Nonlinear Ultrasonics

    Source: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems:;2024:;volume( 008 ):;issue: 001::page 11004-1
    Author:
    Ahmed, Hossain
    ,
    Sadaf, Asef
    ,
    Banerjee, Sourav
    DOI: 10.1115/1.4065707
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Methods to quantification of precursor damage in carbon fiber reinforced polymer (CFRP) composite structures are reported herein. These techniques include coda wave interferometry (CWI) and nonlinear ultrasonics (NLU). Since low-frequency Lamb wave propagation is insensitive to the early-stage material degradation, it is shown that decoding the information in coda wave can overcome this well-known limitation. To conclude this possibility, CWI technique is cross verified with a traditional high-frequency ultrasound method. To achieve this goal, a tensile–tensile fatigue experiment was designed for CFRP composite specimens. By inducing controlled fatigue damage in these structures, material states are assessed using low-frequency (<500 kHz) ultrasonic guided wave and high-frequency (>10 MHz) P-wave. Stretching guided coda wave is utilized to quantify the precursor damage as a unique approach in this article. However, such method could be illuded by the changes in the signals due to bonds and contacts. To verify if the CWI is successful, and to evaluate the precursor damage in composite structures, additional nonlinear analysis of ultrasonic signals from both guided waves and P-waves is performed. Higher order nonlinearities in both low-frequency guided wave and high-frequency P-wave propagation demonstrate the growth of precursor damage in CFRP composite structures. So does the CWI of low-frequency guided wave data. Accuracy of these ultrasonic techniques is validated with experimentally obtained remaining strengths of the fatigue specimens. With this verification it is envisioned that both CWI and NLU together could quantify the precursor damage in composite structures.
    • Download: (2.071Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Precursor Damage Quantification in Composite Structures Using Coda Wave Interferometry and Nonlinear Ultrasonics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305499
    Collections
    • Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems

    Show full item record

    contributor authorAhmed, Hossain
    contributor authorSadaf, Asef
    contributor authorBanerjee, Sourav
    date accessioned2025-04-21T10:06:11Z
    date available2025-04-21T10:06:11Z
    date copyright7/30/2024 12:00:00 AM
    date issued2024
    identifier issn2572-3901
    identifier othernde_8_1_011004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305499
    description abstractMethods to quantification of precursor damage in carbon fiber reinforced polymer (CFRP) composite structures are reported herein. These techniques include coda wave interferometry (CWI) and nonlinear ultrasonics (NLU). Since low-frequency Lamb wave propagation is insensitive to the early-stage material degradation, it is shown that decoding the information in coda wave can overcome this well-known limitation. To conclude this possibility, CWI technique is cross verified with a traditional high-frequency ultrasound method. To achieve this goal, a tensile–tensile fatigue experiment was designed for CFRP composite specimens. By inducing controlled fatigue damage in these structures, material states are assessed using low-frequency (<500 kHz) ultrasonic guided wave and high-frequency (>10 MHz) P-wave. Stretching guided coda wave is utilized to quantify the precursor damage as a unique approach in this article. However, such method could be illuded by the changes in the signals due to bonds and contacts. To verify if the CWI is successful, and to evaluate the precursor damage in composite structures, additional nonlinear analysis of ultrasonic signals from both guided waves and P-waves is performed. Higher order nonlinearities in both low-frequency guided wave and high-frequency P-wave propagation demonstrate the growth of precursor damage in CFRP composite structures. So does the CWI of low-frequency guided wave data. Accuracy of these ultrasonic techniques is validated with experimentally obtained remaining strengths of the fatigue specimens. With this verification it is envisioned that both CWI and NLU together could quantify the precursor damage in composite structures.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePrecursor Damage Quantification in Composite Structures Using Coda Wave Interferometry and Nonlinear Ultrasonics
    typeJournal Paper
    journal volume8
    journal issue1
    journal titleJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
    identifier doi10.1115/1.4065707
    journal fristpage11004-1
    journal lastpage11004-15
    page15
    treeJournal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems:;2024:;volume( 008 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian