YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Autonomous Vehicles and Systems
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Autonomous Vehicles and Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hydroplaning of Tires: A Review of Numerical Modeling and Novel Sensing Methods

    Source: Journal of Autonomous Vehicles and Systems:;2024:;volume( 003 ):;issue: 003::page 31001-1
    Author:
    Vilsan, Alexandru
    ,
    Sandu, Corina
    DOI: 10.1115/1.4065379
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article represents an extensive literature on tire hydroplaning, specifically focusing on the assessment of real-time estimation methodologies and numerical modeling for both partial and total hydroplaning phenomenon. Hydroplaning still poses a significant challenge for contemporary passenger cars, even those equipped with state-of-the-art safety systems. The active safety features that equip the most technologically advanced passenger cars are unable to forecast and prevent the occurrence of hydroplaning. Total hydroplaning represents a phenomenon which occurs when the tire reaches a point where it can no longer expel the water from its tread grooves, leading to a complete control loss of the motor vehicle. This describes a scenario in which the entire contact patch is lifted from the ground due to the hydrodynamic forces generated at the contact between the tire and the layer of water formed on the road. Nevertheless, the decrease in contact between the tire and the road surface occurs gradually, a phenomenon which is presented in the literature as partial hydroplaning. The longitudinal speed that marks the transition from partial hydroplaning to total hydroplaning is defined as the critical hydroplaning speed. These principles are widely acknowledged among researchers in the hydroplaning field. Nonetheless, the literature review reveals variations for defining the critical hydroplaning speed threshold across different experimental investigations. In this article, past studies, and state-of-the-art research on tire hydroplaning has been reviewed, especially focusing on real-time estimation methodologies and numerical modeling of the partial and of the total hydroplaning phenomenon.
    • Download: (1.432Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hydroplaning of Tires: A Review of Numerical Modeling and Novel Sensing Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305471
    Collections
    • Journal of Autonomous Vehicles and Systems

    Show full item record

    contributor authorVilsan, Alexandru
    contributor authorSandu, Corina
    date accessioned2025-04-21T10:05:15Z
    date available2025-04-21T10:05:15Z
    date copyright5/9/2024 12:00:00 AM
    date issued2024
    identifier issn2690-702X
    identifier otherjavs_3_3_031001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305471
    description abstractThis article represents an extensive literature on tire hydroplaning, specifically focusing on the assessment of real-time estimation methodologies and numerical modeling for both partial and total hydroplaning phenomenon. Hydroplaning still poses a significant challenge for contemporary passenger cars, even those equipped with state-of-the-art safety systems. The active safety features that equip the most technologically advanced passenger cars are unable to forecast and prevent the occurrence of hydroplaning. Total hydroplaning represents a phenomenon which occurs when the tire reaches a point where it can no longer expel the water from its tread grooves, leading to a complete control loss of the motor vehicle. This describes a scenario in which the entire contact patch is lifted from the ground due to the hydrodynamic forces generated at the contact between the tire and the layer of water formed on the road. Nevertheless, the decrease in contact between the tire and the road surface occurs gradually, a phenomenon which is presented in the literature as partial hydroplaning. The longitudinal speed that marks the transition from partial hydroplaning to total hydroplaning is defined as the critical hydroplaning speed. These principles are widely acknowledged among researchers in the hydroplaning field. Nonetheless, the literature review reveals variations for defining the critical hydroplaning speed threshold across different experimental investigations. In this article, past studies, and state-of-the-art research on tire hydroplaning has been reviewed, especially focusing on real-time estimation methodologies and numerical modeling of the partial and of the total hydroplaning phenomenon.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHydroplaning of Tires: A Review of Numerical Modeling and Novel Sensing Methods
    typeJournal Paper
    journal volume3
    journal issue3
    journal titleJournal of Autonomous Vehicles and Systems
    identifier doi10.1115/1.4065379
    journal fristpage31001-1
    journal lastpage31001-15
    page15
    treeJournal of Autonomous Vehicles and Systems:;2024:;volume( 003 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian