YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dissipation in Skewed Boundary Layers

    Source: Journal of Turbomachinery:;2024:;volume( 147 ):;issue: 007::page 71007-1
    Author:
    Peacock, Robert
    ,
    Folk, Masha
    ,
    Pullan, Graham
    DOI: 10.1115/1.4067126
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The entropy generation within a turbulent, collateral boundary layer is well understood and is characterized by a dissipation coefficient, Cd. However, it is common for the transverse pressure gradients in turbomachines to create highly skewed boundary layers, where the velocity varies in direction as well as magnitude. A combined experimental and high-fidelity computational approach is used to quantify the effect of skew on the dissipation coefficient for the first time. At a nominal condition of 14 deg of skew and Reθ of 1000, the increase in dissipation coefficient is 20% as determined from direct numerical simulation and 28% from experimental measurements, relative to the collateral boundary layer. Experimental data over a range of skew angles and Reθ values show that Cd increases approximately linearly with skew so that, at a skew of 25∘, loss is 70% greater than in the collateral boundary layer. The implications for loss estimation are examined by evaluating boundary layer loss, in the Harrison turbine cascade, with and without the influence of skew on Cd. By accounting for the skew in the boundary layer, a new proposed model has been used to calculate the loss coefficient in the Harrison cascade within 4% of the experimentally measured value.
    • Download: (1.796Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dissipation in Skewed Boundary Layers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305325
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorPeacock, Robert
    contributor authorFolk, Masha
    contributor authorPullan, Graham
    date accessioned2025-04-21T10:01:10Z
    date available2025-04-21T10:01:10Z
    date copyright12/20/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_147_7_071007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305325
    description abstractThe entropy generation within a turbulent, collateral boundary layer is well understood and is characterized by a dissipation coefficient, Cd. However, it is common for the transverse pressure gradients in turbomachines to create highly skewed boundary layers, where the velocity varies in direction as well as magnitude. A combined experimental and high-fidelity computational approach is used to quantify the effect of skew on the dissipation coefficient for the first time. At a nominal condition of 14 deg of skew and Reθ of 1000, the increase in dissipation coefficient is 20% as determined from direct numerical simulation and 28% from experimental measurements, relative to the collateral boundary layer. Experimental data over a range of skew angles and Reθ values show that Cd increases approximately linearly with skew so that, at a skew of 25∘, loss is 70% greater than in the collateral boundary layer. The implications for loss estimation are examined by evaluating boundary layer loss, in the Harrison turbine cascade, with and without the influence of skew on Cd. By accounting for the skew in the boundary layer, a new proposed model has been used to calculate the loss coefficient in the Harrison cascade within 4% of the experimentally measured value.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDissipation in Skewed Boundary Layers
    typeJournal Paper
    journal volume147
    journal issue7
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4067126
    journal fristpage71007-1
    journal lastpage71007-13
    page13
    treeJournal of Turbomachinery:;2024:;volume( 147 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian