YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heuristics for Solver-Aware Systems Architecting: A Reinforcement Learning Approach

    Source: Journal of Mechanical Design:;2024:;volume( 147 ):;issue: 002::page 21704-1
    Author:
    Gadi, Vikranth S.
    ,
    Topcu, Taylan G.
    ,
    Szajnfarber, Zoe
    ,
    Panchal, Jitesh H.
    DOI: 10.1115/1.4066441
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The crowdsourcing literature has shown that domain experts are not always the best solvers for complex system design problems. Under certain conditions, novices and specialists in adjacent domains can provide novel solutions at lower costs. Additionally, the best types of solvers for different problems are dependent on the architecture of complex systems. The joint consideration of solver assignment and system decomposition, referred to as solver-aware system architecting (SASA), expands traditional system architecting practices by considering solver characteristics and contractual incentive mechanisms in the design process and aims to improve complex system design and innovation by leveraging the strengths of domain experts, crowds, and specialists for different parts of the problem. The joint consideration of problem decomposition and solver assignment decisions in SASA renders the design space exponentially more complex. Therefore, new computationally efficient and mathematically rigorous methods are needed to explore this high-dimensional space and extract reliable heuristics. To address this need, this paper presents a computational approach using a Markov decision process (MDP) formulation, Q-learning, and Gaussian mixture models. Together, these techniques explore the large space of possible solver–module assignments by modeling the sequential nature of solver assignment decisions, capturing these temporal dependencies, thereby enabling optimization for long-term expected rewards, and analyzing reward distributions. The approach identifies heuristics for solver assignment based on the designer’s preference for cost-performance trade-off through the parameterized reward function. The approach is demonstrated using a simple and idealized golf problem, which has characteristics similar to design problems, including how the problem is decomposed into interdependent modules and can be solved by different solvers with different strengths that interact with the module type. The results show that the proposed approach effectively elicits a rich set of heuristics applicable in various contexts for the golf problem and can be extended to more complex systems design problems.
    • Download: (1003.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heuristics for Solver-Aware Systems Architecting: A Reinforcement Learning Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305260
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorGadi, Vikranth S.
    contributor authorTopcu, Taylan G.
    contributor authorSzajnfarber, Zoe
    contributor authorPanchal, Jitesh H.
    date accessioned2025-04-21T09:59:30Z
    date available2025-04-21T09:59:30Z
    date copyright9/23/2024 12:00:00 AM
    date issued2024
    identifier issn1050-0472
    identifier othermd_147_2_021704.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305260
    description abstractThe crowdsourcing literature has shown that domain experts are not always the best solvers for complex system design problems. Under certain conditions, novices and specialists in adjacent domains can provide novel solutions at lower costs. Additionally, the best types of solvers for different problems are dependent on the architecture of complex systems. The joint consideration of solver assignment and system decomposition, referred to as solver-aware system architecting (SASA), expands traditional system architecting practices by considering solver characteristics and contractual incentive mechanisms in the design process and aims to improve complex system design and innovation by leveraging the strengths of domain experts, crowds, and specialists for different parts of the problem. The joint consideration of problem decomposition and solver assignment decisions in SASA renders the design space exponentially more complex. Therefore, new computationally efficient and mathematically rigorous methods are needed to explore this high-dimensional space and extract reliable heuristics. To address this need, this paper presents a computational approach using a Markov decision process (MDP) formulation, Q-learning, and Gaussian mixture models. Together, these techniques explore the large space of possible solver–module assignments by modeling the sequential nature of solver assignment decisions, capturing these temporal dependencies, thereby enabling optimization for long-term expected rewards, and analyzing reward distributions. The approach identifies heuristics for solver assignment based on the designer’s preference for cost-performance trade-off through the parameterized reward function. The approach is demonstrated using a simple and idealized golf problem, which has characteristics similar to design problems, including how the problem is decomposed into interdependent modules and can be solved by different solvers with different strengths that interact with the module type. The results show that the proposed approach effectively elicits a rich set of heuristics applicable in various contexts for the golf problem and can be extended to more complex systems design problems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeuristics for Solver-Aware Systems Architecting: A Reinforcement Learning Approach
    typeJournal Paper
    journal volume147
    journal issue2
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4066441
    journal fristpage21704-1
    journal lastpage21704-13
    page13
    treeJournal of Mechanical Design:;2024:;volume( 147 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian