YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Journal of Heat and Mass Transfer
    • View Item
    •   YE&T Library
    • ASME
    • ASME Journal of Heat and Mass Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fluid Flow and Heat Transfer of Nanofluids Inside Helical Tubes at Constant Wall Temperature

    Source: ASME Journal of Heat and Mass Transfer:;2025:;volume( 147 ):;issue: 005::page 51802-1
    Author:
    Nazari, S.
    ,
    Rezaei, E.
    ,
    A. Moshizi, S.
    DOI: 10.1115/1.4067424
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper investigates the forced convection of alumina-water nanofluids within helical tubes, maintaining a constant wall temperature and assuming thermal equilibrium between the nanoparticles and the base fluid. The nanofluid model incorporates the effects of alumina (Al2O3) nanoparticle volume fraction, diameter, and temperature on thermophysical properties. The governing equations are solved using the Forward-Time Central-Space Finite Volume method in conjunction with the simple algorithm. Numerical results are validated against experimental data, demonstrating high accuracy. The study explores the effects of pitch size, curvature ratio, nanoparticle volume fraction, nanoparticle diameter, and Reynolds number on velocity contours, temperature profiles, secondary flow, thermophysical properties, friction coefficient, and heat transfer rate. Additionally, the figure of merit evaluates the impact of these parameters on the thermal performance of the system. The results indicate that an increase in Reynolds number and nanoparticle diameter negatively affects thermal performance, while higher nanoparticle volume fraction, curvature ratio, and pitch size enhance it. Furthermore, incorporating nanoparticles in straight tubes proves to be more advantageous compared to helical tubes. This study tested volumetric ratios of 1%, 2%, and 4%, which resulted in increases in heat transfer coefficients of 21%, 32%, and 43%, respectively, compared to pure water under similar conditions, such as Reynolds number and coil pitch.
    • Download: (3.459Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fluid Flow and Heat Transfer of Nanofluids Inside Helical Tubes at Constant Wall Temperature

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305222
    Collections
    • ASME Journal of Heat and Mass Transfer

    Show full item record

    contributor authorNazari, S.
    contributor authorRezaei, E.
    contributor authorA. Moshizi, S.
    date accessioned2025-04-21T09:58:22Z
    date available2025-04-21T09:58:22Z
    date copyright2/6/2025 12:00:00 AM
    date issued2025
    identifier issn2832-8450
    identifier otherht_147_05_051802.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305222
    description abstractThis paper investigates the forced convection of alumina-water nanofluids within helical tubes, maintaining a constant wall temperature and assuming thermal equilibrium between the nanoparticles and the base fluid. The nanofluid model incorporates the effects of alumina (Al2O3) nanoparticle volume fraction, diameter, and temperature on thermophysical properties. The governing equations are solved using the Forward-Time Central-Space Finite Volume method in conjunction with the simple algorithm. Numerical results are validated against experimental data, demonstrating high accuracy. The study explores the effects of pitch size, curvature ratio, nanoparticle volume fraction, nanoparticle diameter, and Reynolds number on velocity contours, temperature profiles, secondary flow, thermophysical properties, friction coefficient, and heat transfer rate. Additionally, the figure of merit evaluates the impact of these parameters on the thermal performance of the system. The results indicate that an increase in Reynolds number and nanoparticle diameter negatively affects thermal performance, while higher nanoparticle volume fraction, curvature ratio, and pitch size enhance it. Furthermore, incorporating nanoparticles in straight tubes proves to be more advantageous compared to helical tubes. This study tested volumetric ratios of 1%, 2%, and 4%, which resulted in increases in heat transfer coefficients of 21%, 32%, and 43%, respectively, compared to pure water under similar conditions, such as Reynolds number and coil pitch.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFluid Flow and Heat Transfer of Nanofluids Inside Helical Tubes at Constant Wall Temperature
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4067424
    journal fristpage51802-1
    journal lastpage51802-13
    page13
    treeASME Journal of Heat and Mass Transfer:;2025:;volume( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian