Design, Evaluation, and Implementation of a Novel Magnetic Resonance Imaging-Compatible Physiologic Loading Simulator for Ex-Vivo JointsSource: Journal of Biomechanical Engineering:;2024:;volume( 147 ):;issue: 001::page 11008-1Author:Espinosa Maldonado, Alvaro A.
,
Dolovich, Allan T.
,
Johnston, James D.
,
McWalter, Emily J.
DOI: 10.1115/1.4066957Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Quantitative magnetic resonance imaging (qMRI), in combination with mechanical testing, offers potential to investigate how loading (e.g., from daily physical exercise) is related to joint and tissue function. However, current testing devices compatible with magnetic resonance imaging (MRI) are often limited to uniaxial compression, often applying low loads, or loading individual tissues (instead of multiple), while more complex simulators do not facilitate MRI. Hence, in this work, we designed, built and tested (N = 1) an MRI-compatible multi-axial load-control system, which enables scanning cadaveric joints (healthy or pathologic) loaded to physiologically relevant levels. Testing involved estimating and validating physiologic loading conditions before implementing them experimentally on cadaver knees to simulate and image gait loading (stance and swing). The resulting design consisted of a portable loading device featuring pneumatic actuators to reach a combined loading scenario, including axial compression (≤2.5 kN), shear (≤1 kN), bending (≤30 N·m) and muscle tension. Initial laboratory testing was carried out; specifically, the device was instrumented with force and pressure sensors to evaluate loading and contact response repeatability in one cadaver knee specimen. This loading system was able to simulate healthy or pathologic gait with reasonable repeatability (e.g., 1.23–2.91% coefficient of variation for axial compression), comparable to current state-of-the-art simulators, leading to generally consistent contact responses. Contact measurements demonstrated a tibiofemoral to patellofemoral load transfer with knee flexion and large contact pressures concentrated over small sites between the femoral cartilage and menisci, agreeing with experimental studies and numerical simulations in the literature.
|
Collections
Show full item record
| contributor author | Espinosa Maldonado, Alvaro A. | |
| contributor author | Dolovich, Allan T. | |
| contributor author | Johnston, James D. | |
| contributor author | McWalter, Emily J. | |
| date accessioned | 2025-04-21T09:56:51Z | |
| date available | 2025-04-21T09:56:51Z | |
| date copyright | 11/20/2024 12:00:00 AM | |
| date issued | 2024 | |
| identifier issn | 0148-0731 | |
| identifier other | bio_147_01_011008.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4305171 | |
| description abstract | Quantitative magnetic resonance imaging (qMRI), in combination with mechanical testing, offers potential to investigate how loading (e.g., from daily physical exercise) is related to joint and tissue function. However, current testing devices compatible with magnetic resonance imaging (MRI) are often limited to uniaxial compression, often applying low loads, or loading individual tissues (instead of multiple), while more complex simulators do not facilitate MRI. Hence, in this work, we designed, built and tested (N = 1) an MRI-compatible multi-axial load-control system, which enables scanning cadaveric joints (healthy or pathologic) loaded to physiologically relevant levels. Testing involved estimating and validating physiologic loading conditions before implementing them experimentally on cadaver knees to simulate and image gait loading (stance and swing). The resulting design consisted of a portable loading device featuring pneumatic actuators to reach a combined loading scenario, including axial compression (≤2.5 kN), shear (≤1 kN), bending (≤30 N·m) and muscle tension. Initial laboratory testing was carried out; specifically, the device was instrumented with force and pressure sensors to evaluate loading and contact response repeatability in one cadaver knee specimen. This loading system was able to simulate healthy or pathologic gait with reasonable repeatability (e.g., 1.23–2.91% coefficient of variation for axial compression), comparable to current state-of-the-art simulators, leading to generally consistent contact responses. Contact measurements demonstrated a tibiofemoral to patellofemoral load transfer with knee flexion and large contact pressures concentrated over small sites between the femoral cartilage and menisci, agreeing with experimental studies and numerical simulations in the literature. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Design, Evaluation, and Implementation of a Novel Magnetic Resonance Imaging-Compatible Physiologic Loading Simulator for Ex-Vivo Joints | |
| type | Journal Paper | |
| journal volume | 147 | |
| journal issue | 1 | |
| journal title | Journal of Biomechanical Engineering | |
| identifier doi | 10.1115/1.4066957 | |
| journal fristpage | 11008-1 | |
| journal lastpage | 11008-13 | |
| page | 13 | |
| tree | Journal of Biomechanical Engineering:;2024:;volume( 147 ):;issue: 001 | |
| contenttype | Fulltext |