YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Advanced Methods for Assessing Flow Physics of the TU Darmstadt Compressor Stage: Uncertainty Quantification of RANS Turbulence Modeling

    Source: Journal of Turbomachinery:;2025:;volume( 147 ):;issue: 008::page 81004-1
    Author:
    Matha, Marcel
    ,
    Möller, Felix M.
    ,
    Bode, Christoph
    ,
    Morsbach, Christian
    ,
    Kügeler, Edmund
    DOI: 10.1115/1.4067315
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we quantify the turbulence modeling uncertainty for the transonic Technische Universität Darmstadt (TUDa) compressor. The present work applies the Eigenspace Perturbation Framework (EPF) as it is the only published physics-based framework capable of addressing the model-form uncertainty in turbulence closure modeling. To sample from the possible solution space and obtain the modeling uncertainty, we perform simulations perturbing the eigenvalues of the Reynolds stress tensor in addition to simulations using an unperturbed turbulence model. We show that the shape of the Reynolds stress tensor ellipsoid has significant impact on the evolution of turbulence, flow separation, vortex systems, shock-boundary layer interaction, and finally the overall performance of the compressor. We compare the estimated uncertainties with available measurements and transitional Delayed Detached-Eddy Simulations (DDES). This allows us to assess the confidence of the chosen turbulence model and to evaluate the sharpness and coverage of the resulting uncertainty bounds. Thus, the EPF is comprehensively validated and suggestions for its future applicability with respect to turbomachinery components are made.
    • Download: (1.537Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Advanced Methods for Assessing Flow Physics of the TU Darmstadt Compressor Stage: Uncertainty Quantification of RANS Turbulence Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305153
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorMatha, Marcel
    contributor authorMöller, Felix M.
    contributor authorBode, Christoph
    contributor authorMorsbach, Christian
    contributor authorKügeler, Edmund
    date accessioned2025-04-21T09:56:21Z
    date available2025-04-21T09:56:21Z
    date copyright1/13/2025 12:00:00 AM
    date issued2025
    identifier issn0889-504X
    identifier otherturbo_147_8_081004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305153
    description abstractIn this paper, we quantify the turbulence modeling uncertainty for the transonic Technische Universität Darmstadt (TUDa) compressor. The present work applies the Eigenspace Perturbation Framework (EPF) as it is the only published physics-based framework capable of addressing the model-form uncertainty in turbulence closure modeling. To sample from the possible solution space and obtain the modeling uncertainty, we perform simulations perturbing the eigenvalues of the Reynolds stress tensor in addition to simulations using an unperturbed turbulence model. We show that the shape of the Reynolds stress tensor ellipsoid has significant impact on the evolution of turbulence, flow separation, vortex systems, shock-boundary layer interaction, and finally the overall performance of the compressor. We compare the estimated uncertainties with available measurements and transitional Delayed Detached-Eddy Simulations (DDES). This allows us to assess the confidence of the chosen turbulence model and to evaluate the sharpness and coverage of the resulting uncertainty bounds. Thus, the EPF is comprehensively validated and suggestions for its future applicability with respect to turbomachinery components are made.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAdvanced Methods for Assessing Flow Physics of the TU Darmstadt Compressor Stage: Uncertainty Quantification of RANS Turbulence Modeling
    typeJournal Paper
    journal volume147
    journal issue8
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4067315
    journal fristpage81004-1
    journal lastpage81004-12
    page12
    treeJournal of Turbomachinery:;2025:;volume( 147 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian