YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flow and Heat Transfer in Rotating Compressor Cavities With Inverted Shroud-Throughflow Temperature Differences

    Source: Journal of Turbomachinery:;2024:;volume( 147 ):;issue: 007::page 71005-1
    Author:
    Pernak, Mikolaj J.
    ,
    Nicholas, Tom E. W.
    ,
    Carnevale, Mauro
    ,
    Lock, Gary D.
    ,
    Tang, Hui
    ,
    Scobie, James A.
    DOI: 10.1115/1.4067075
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In an aero-engine compressor, co-rotating discs form cavities that interact with an axial throughflow of secondary air at low radius. In the high-pressure (HP) compressor the shroud is hotter than the throughflow (directed downstream to the turbine) and the radial temperature gradient creates buoyancy-induced flow at Grashof numbers ∼1013. Such flows can be unstable and typically take the form of counter-rotating vortex pairs separated by radial hot and cold plumes. However, in low pressure (LP) and intermediate pressure (IP) compressors the secondary air is directed upstream. In this inverse scenario, the axial throughflow is hotter than the compressor discs, reversing the disc temperature gradient and eliminating the fundamental driver for buoyancy. Despite its practical application and importance, this inverse scenario has not been previously investigated. The University of Bath Compressor Cavity Rig has been uniquely designed to simulate such flows, measuring temperature, and unsteady pressure in the frame of reference of the rotating discs. Bayesian and spectral analysis have determined the radial distribution of disc heat flux, as well as the asymmetry of the rotating vortex structures and their slip relative to the discs. Unexpectedly, the new data reveal the flow structure in cavities with positive and inverted temperature differences are fundamentally similar (albeit with reversed radial-temperature profiles). Isothermal cases identified a critical Rossby number (Ro), above which the flow structure in the cavity was dominated by a toroidal vortex. At subcritical Ro, the flow structure for the inverted temperature gradient continued to be governed by buoyancy due to disc heat transfer. Momentum exchange with the axial throughflow and the gradient of circumferential pressure combine to vary the slip and vortex symmetry. This paper provides the first data and analysis of flow and heat transfer during inverse throughflow conditions in LP and IP compressors. The new insights are of importance for the determination of the thermal stresses in discs, engine life, compressor blade clearance and efficiency.
    • Download: (1.705Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flow and Heat Transfer in Rotating Compressor Cavities With Inverted Shroud-Throughflow Temperature Differences

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4305150
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorPernak, Mikolaj J.
    contributor authorNicholas, Tom E. W.
    contributor authorCarnevale, Mauro
    contributor authorLock, Gary D.
    contributor authorTang, Hui
    contributor authorScobie, James A.
    date accessioned2025-04-21T09:56:17Z
    date available2025-04-21T09:56:17Z
    date copyright12/10/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_147_7_071005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305150
    description abstractIn an aero-engine compressor, co-rotating discs form cavities that interact with an axial throughflow of secondary air at low radius. In the high-pressure (HP) compressor the shroud is hotter than the throughflow (directed downstream to the turbine) and the radial temperature gradient creates buoyancy-induced flow at Grashof numbers ∼1013. Such flows can be unstable and typically take the form of counter-rotating vortex pairs separated by radial hot and cold plumes. However, in low pressure (LP) and intermediate pressure (IP) compressors the secondary air is directed upstream. In this inverse scenario, the axial throughflow is hotter than the compressor discs, reversing the disc temperature gradient and eliminating the fundamental driver for buoyancy. Despite its practical application and importance, this inverse scenario has not been previously investigated. The University of Bath Compressor Cavity Rig has been uniquely designed to simulate such flows, measuring temperature, and unsteady pressure in the frame of reference of the rotating discs. Bayesian and spectral analysis have determined the radial distribution of disc heat flux, as well as the asymmetry of the rotating vortex structures and their slip relative to the discs. Unexpectedly, the new data reveal the flow structure in cavities with positive and inverted temperature differences are fundamentally similar (albeit with reversed radial-temperature profiles). Isothermal cases identified a critical Rossby number (Ro), above which the flow structure in the cavity was dominated by a toroidal vortex. At subcritical Ro, the flow structure for the inverted temperature gradient continued to be governed by buoyancy due to disc heat transfer. Momentum exchange with the axial throughflow and the gradient of circumferential pressure combine to vary the slip and vortex symmetry. This paper provides the first data and analysis of flow and heat transfer during inverse throughflow conditions in LP and IP compressors. The new insights are of importance for the determination of the thermal stresses in discs, engine life, compressor blade clearance and efficiency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlow and Heat Transfer in Rotating Compressor Cavities With Inverted Shroud-Throughflow Temperature Differences
    typeJournal Paper
    journal volume147
    journal issue7
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4067075
    journal fristpage71005-1
    journal lastpage71005-12
    page12
    treeJournal of Turbomachinery:;2024:;volume( 147 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian