YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interface Dynamic Shear Characteristics of Aging GMB/CCL Composite Liner

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 011::page 04024110-1
    Author:
    Dian Chen
    ,
    Yong-Gui Chen
    ,
    Yong-Feng Deng
    ,
    Wei-Min Ye
    ,
    Dai-Cheng Ye
    ,
    Juan Hou
    DOI: 10.1061/JGGEFK.GTENG-12563
    Publisher: American Society of Civil Engineers
    Abstract: Aging degradation of the geomembrane (GMB) significantly influences the dynamic shear characteristics of the composite liner interface, which comprises the GMB and the compacted clay liner (CCL), potentially jeopardizing the dynamic stability of landfills. In this study, cyclic shear tests were performed on two types of aging GMB/CCL interfaces, concurrently with shear tests on the nonaging GMB/CCL interface for comparison. The results suggest that the impact of aging on the dynamic shear characteristics of the GMB/CCL interface is essentially governed by the surface roughness and brittleness of the GMB, with the effect degree of brittleness influenced by the normal stress. Under low normal stress, aging increased the vertical displacement, dynamic shear strength, and shear stiffness of the GMB/CCL interface. However, under high normal stress, the dynamic shear strength and shear stiffness of the aging GMB/CCL interface were more likely to be lower than those of the nonaging interface. As the displacement amplitude increased, the influence of aging on the shear stiffness of the GMB/CCL interface gradually diminished. Aging also reduced the damping ratio of the GMB/CCL interface. The difference in vertical displacement between the exposed GMB/CCL interface and the in soil GMB/CCL interface caused by brittleness was not significant. In practical engineering, when the overlying load on the GMB/CCL composite liner is relatively small, aging makes the GMB more susceptible to tearing under seismic loads, whereas with larger overlying loads, aging is more likely to increase the shear displacement, thereby increasing the likelihood of instability in landfill. Finally, based on classic models of soil, fitting models for the normalized shear stiffness and damping ratio of the GMB/CCL interface were established and validated. This study can provide reference for analyzing the dynamic stability of landfills during long-term use.
    • Download: (1.948Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interface Dynamic Shear Characteristics of Aging GMB/CCL Composite Liner

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304813
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorDian Chen
    contributor authorYong-Gui Chen
    contributor authorYong-Feng Deng
    contributor authorWei-Min Ye
    contributor authorDai-Cheng Ye
    contributor authorJuan Hou
    date accessioned2025-04-20T10:29:04Z
    date available2025-04-20T10:29:04Z
    date copyright8/29/2024 12:00:00 AM
    date issued2024
    identifier otherJGGEFK.GTENG-12563.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304813
    description abstractAging degradation of the geomembrane (GMB) significantly influences the dynamic shear characteristics of the composite liner interface, which comprises the GMB and the compacted clay liner (CCL), potentially jeopardizing the dynamic stability of landfills. In this study, cyclic shear tests were performed on two types of aging GMB/CCL interfaces, concurrently with shear tests on the nonaging GMB/CCL interface for comparison. The results suggest that the impact of aging on the dynamic shear characteristics of the GMB/CCL interface is essentially governed by the surface roughness and brittleness of the GMB, with the effect degree of brittleness influenced by the normal stress. Under low normal stress, aging increased the vertical displacement, dynamic shear strength, and shear stiffness of the GMB/CCL interface. However, under high normal stress, the dynamic shear strength and shear stiffness of the aging GMB/CCL interface were more likely to be lower than those of the nonaging interface. As the displacement amplitude increased, the influence of aging on the shear stiffness of the GMB/CCL interface gradually diminished. Aging also reduced the damping ratio of the GMB/CCL interface. The difference in vertical displacement between the exposed GMB/CCL interface and the in soil GMB/CCL interface caused by brittleness was not significant. In practical engineering, when the overlying load on the GMB/CCL composite liner is relatively small, aging makes the GMB more susceptible to tearing under seismic loads, whereas with larger overlying loads, aging is more likely to increase the shear displacement, thereby increasing the likelihood of instability in landfill. Finally, based on classic models of soil, fitting models for the normalized shear stiffness and damping ratio of the GMB/CCL interface were established and validated. This study can provide reference for analyzing the dynamic stability of landfills during long-term use.
    publisherAmerican Society of Civil Engineers
    titleInterface Dynamic Shear Characteristics of Aging GMB/CCL Composite Liner
    typeJournal Article
    journal volume150
    journal issue11
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-12563
    journal fristpage04024110-1
    journal lastpage04024110-17
    page17
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2024:;Volume ( 150 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian