YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Geotechnical and Geoenvironmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Centrifuge Modeling of the Installation Advancement Ratio Effect on the Cyclic Response of a Single-Helix Screw Pile for Floating Offshore Wind

    Source: Journal of Geotechnical and Geoenvironmental Engineering:;2025:;Volume ( 151 ):;issue: 001::page 04024133-1
    Author:
    Wei Wang
    ,
    Michael John Brown
    ,
    Yaseen Umar Sharif
    ,
    Craig Davidson
    ,
    Matteo Oryem Ciantia
    DOI: 10.1061/JGGEFK.GTENG-12331
    Publisher: American Society of Civil Engineers
    Abstract: Upscaled screw piles have been proposed as anchors for offshore floating wind applications, but this upscaling can result in a significant increase in vertical installation forces. Previous studies have shown that the use of overflighting techniques during installation (installation advancement ratio, AR<1.0) can reduce or eliminate these forces and improve the capacity and stiffness of screw piles under monotonic tensile loading conditions. However, the impact of overflighting installation on the cyclic response of screw piles has not received adequate attention. To address this, a series of drained cyclic uplift tests in a geotechnical centrifuge were conducted. The tests involved different AR values during installation and varying one-way cyclic tensile loading amplitudes. The results revealed that reducing the installation AR can significantly decrease displacement accumulation and improve cyclic loading stiffness, resulting in a more stable cyclic response. The cyclic axial loading stiffness tends to stabilize or slightly decrease with cycling for stable cases, while unstable and metastable cases exhibit an initial reduction of loading stiffness followed by a stabilization or slow recovery. The postcyclic monotonic uplift tests also show that capacity degradation was predominately due to the displacement accumulation itself rather than any additional cyclic effects. The cyclic stability of the screw pile investigated was found to be comparable with straight-shafted and screw piles from previous studies and beneficial installation effects were maintained under cyclic loading. A predictive framework for displacement accumulation and capacity degradation is also presented and developed within this paper.
    • Download: (4.574Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Centrifuge Modeling of the Installation Advancement Ratio Effect on the Cyclic Response of a Single-Helix Screw Pile for Floating Offshore Wind

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4304195
    Collections
    • Journal of Geotechnical and Geoenvironmental Engineering

    Show full item record

    contributor authorWei Wang
    contributor authorMichael John Brown
    contributor authorYaseen Umar Sharif
    contributor authorCraig Davidson
    contributor authorMatteo Oryem Ciantia
    date accessioned2025-04-20T10:11:55Z
    date available2025-04-20T10:11:55Z
    date copyright10/17/2024 12:00:00 AM
    date issued2025
    identifier otherJGGEFK.GTENG-12331.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4304195
    description abstractUpscaled screw piles have been proposed as anchors for offshore floating wind applications, but this upscaling can result in a significant increase in vertical installation forces. Previous studies have shown that the use of overflighting techniques during installation (installation advancement ratio, AR<1.0) can reduce or eliminate these forces and improve the capacity and stiffness of screw piles under monotonic tensile loading conditions. However, the impact of overflighting installation on the cyclic response of screw piles has not received adequate attention. To address this, a series of drained cyclic uplift tests in a geotechnical centrifuge were conducted. The tests involved different AR values during installation and varying one-way cyclic tensile loading amplitudes. The results revealed that reducing the installation AR can significantly decrease displacement accumulation and improve cyclic loading stiffness, resulting in a more stable cyclic response. The cyclic axial loading stiffness tends to stabilize or slightly decrease with cycling for stable cases, while unstable and metastable cases exhibit an initial reduction of loading stiffness followed by a stabilization or slow recovery. The postcyclic monotonic uplift tests also show that capacity degradation was predominately due to the displacement accumulation itself rather than any additional cyclic effects. The cyclic stability of the screw pile investigated was found to be comparable with straight-shafted and screw piles from previous studies and beneficial installation effects were maintained under cyclic loading. A predictive framework for displacement accumulation and capacity degradation is also presented and developed within this paper.
    publisherAmerican Society of Civil Engineers
    titleCentrifuge Modeling of the Installation Advancement Ratio Effect on the Cyclic Response of a Single-Helix Screw Pile for Floating Offshore Wind
    typeJournal Article
    journal volume151
    journal issue1
    journal titleJournal of Geotechnical and Geoenvironmental Engineering
    identifier doi10.1061/JGGEFK.GTENG-12331
    journal fristpage04024133-1
    journal lastpage04024133-18
    page18
    treeJournal of Geotechnical and Geoenvironmental Engineering:;2025:;Volume ( 151 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian