YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Reliability Assessment Framework for Unsaturated Soil Slope under Near-Fault Pulse-Like Ground Motion

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2025:;Volume ( 011 ):;issue: 002::page 04025005-1
    Author:
    Ruohan Wang
    ,
    Guan Chen
    ,
    Yong Liu
    ,
    Michael Beer
    DOI: 10.1061/AJRUA6.RUENG-1227
    Publisher: American Society of Civil Engineers
    Abstract: The seismic reliability of soil slopes in geohazard-prone regions, particularly under near-fault earthquake conditions, poses a significant challenge. This challenge is exacerbated by the scarcity of pulse-like ground-motion records for such scenarios and the limited consideration of unsaturated soil behavior. In response to these issues, we propose a comprehensive seismic reliability assessment (SRA) framework tailored to unsaturated soil slopes subjected to stochastic pulse-like ground motions (PLGMs). This framework integrates three critical components: a novel PLGM simulation method, a sophisticated nonlinear hydro-mechanical coupling analysis for unsaturated soil, and an advanced reliability assessment methodology. Compared to previous works, the proposed framework has advantages of connecting the seismic reliability and target spectrum in anti-seismic codes and evaluating the seismic stability of unsaturated soil from the perspective of the physical mechanisms. An unsaturated clay slope is illustrated to demonstrate the feasibility and effectiveness of the proposed SRA framework. The results of analysis demonstrate that the framework is highly capable of assessing seismic reliability under stochastic PLGMs. Notably, the seismic slope displacement subjected to PLGMs is significantly greater than that subjected to ordinary ground motions. Additionally, even when the acceleration spectra of input ground motions are controlled, the randomness of ground motions plays a dominant role in influencing seismic responses, outweighing the spatial variability of soil properties.
    • Download: (3.646Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Reliability Assessment Framework for Unsaturated Soil Slope under Near-Fault Pulse-Like Ground Motion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303880
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorRuohan Wang
    contributor authorGuan Chen
    contributor authorYong Liu
    contributor authorMichael Beer
    date accessioned2025-04-20T10:02:23Z
    date available2025-04-20T10:02:23Z
    date copyright1/28/2025 12:00:00 AM
    date issued2025
    identifier otherAJRUA6.RUENG-1227.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303880
    description abstractThe seismic reliability of soil slopes in geohazard-prone regions, particularly under near-fault earthquake conditions, poses a significant challenge. This challenge is exacerbated by the scarcity of pulse-like ground-motion records for such scenarios and the limited consideration of unsaturated soil behavior. In response to these issues, we propose a comprehensive seismic reliability assessment (SRA) framework tailored to unsaturated soil slopes subjected to stochastic pulse-like ground motions (PLGMs). This framework integrates three critical components: a novel PLGM simulation method, a sophisticated nonlinear hydro-mechanical coupling analysis for unsaturated soil, and an advanced reliability assessment methodology. Compared to previous works, the proposed framework has advantages of connecting the seismic reliability and target spectrum in anti-seismic codes and evaluating the seismic stability of unsaturated soil from the perspective of the physical mechanisms. An unsaturated clay slope is illustrated to demonstrate the feasibility and effectiveness of the proposed SRA framework. The results of analysis demonstrate that the framework is highly capable of assessing seismic reliability under stochastic PLGMs. Notably, the seismic slope displacement subjected to PLGMs is significantly greater than that subjected to ordinary ground motions. Additionally, even when the acceleration spectra of input ground motions are controlled, the randomness of ground motions plays a dominant role in influencing seismic responses, outweighing the spatial variability of soil properties.
    publisherAmerican Society of Civil Engineers
    titleSeismic Reliability Assessment Framework for Unsaturated Soil Slope under Near-Fault Pulse-Like Ground Motion
    typeJournal Article
    journal volume11
    journal issue2
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.RUENG-1227
    journal fristpage04025005-1
    journal lastpage04025005-14
    page14
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2025:;Volume ( 011 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian