YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Control and Performance Assessment of Isolated Bridges Using Integration of Negative Stiffness and Inerter-Based Supplemental Control Devices

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 004::page 04024067-1
    Author:
    Naqeeb Ul Islam
    ,
    R. S. Jangid
    DOI: 10.1061/AJRUA6.RUENG-1360
    Publisher: American Society of Civil Engineers
    Abstract: The present study introduces inerter-based absorbers (IVAs), negative stiffness dampers (NSDs), and their synergistic combination as supplemental control strategies for a multispan continuous deck isolated bridge structure. An inerter functions as a device capable of generating force proportional to relative acceleration between its terminals. Conversely, a passive negative stiffness mechanism is designed to generate force that aids in motion. Specifically, tuned inerter dampers (TIDs), negative stiffness amplifying dampers (NSADs or simply NSDs), and their synergistic combination in the form of negative stiffness inerter dampers (NSIDs) are introduced at bearing levels as supplemental dissipation mechanisms or control devices. The continuous-span bridge is simplified and modelled as a reduced lumped mass system by appropriate static condensation of the degrees of freedom. The isolated bridge with supplemental control devices is subjected to typical stationary ground motion with specified power spectral density. Stochastic responses such as mean square shear at the bearing level and pier base, deck acceleration, and bearing displacement are evaluated. The stochastic assessment of three negative stiffness and inerter mechanisms, viz., NSD, TID, and NSID, shows that biobjective optimization is necessary for the best control performance. An optimization framework is also introduced, minimizing the stochastic responses and obtaining the corresponding optimal parameters. A set of real earthquake records containing near fault (NF) and far field (FF) types of excitations are used for the performance assessment of optimized control devices. Among the three dissipation mechanisms, optimal NSID performs better, and the required optimum parameters are lower in magnitude, forming an important design criterion.
    • Download: (6.665Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Control and Performance Assessment of Isolated Bridges Using Integration of Negative Stiffness and Inerter-Based Supplemental Control Devices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303874
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorNaqeeb Ul Islam
    contributor authorR. S. Jangid
    date accessioned2025-04-20T10:02:03Z
    date available2025-04-20T10:02:03Z
    date copyright9/26/2024 12:00:00 AM
    date issued2024
    identifier otherAJRUA6.RUENG-1360.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303874
    description abstractThe present study introduces inerter-based absorbers (IVAs), negative stiffness dampers (NSDs), and their synergistic combination as supplemental control strategies for a multispan continuous deck isolated bridge structure. An inerter functions as a device capable of generating force proportional to relative acceleration between its terminals. Conversely, a passive negative stiffness mechanism is designed to generate force that aids in motion. Specifically, tuned inerter dampers (TIDs), negative stiffness amplifying dampers (NSADs or simply NSDs), and their synergistic combination in the form of negative stiffness inerter dampers (NSIDs) are introduced at bearing levels as supplemental dissipation mechanisms or control devices. The continuous-span bridge is simplified and modelled as a reduced lumped mass system by appropriate static condensation of the degrees of freedom. The isolated bridge with supplemental control devices is subjected to typical stationary ground motion with specified power spectral density. Stochastic responses such as mean square shear at the bearing level and pier base, deck acceleration, and bearing displacement are evaluated. The stochastic assessment of three negative stiffness and inerter mechanisms, viz., NSD, TID, and NSID, shows that biobjective optimization is necessary for the best control performance. An optimization framework is also introduced, minimizing the stochastic responses and obtaining the corresponding optimal parameters. A set of real earthquake records containing near fault (NF) and far field (FF) types of excitations are used for the performance assessment of optimized control devices. Among the three dissipation mechanisms, optimal NSID performs better, and the required optimum parameters are lower in magnitude, forming an important design criterion.
    publisherAmerican Society of Civil Engineers
    titleSeismic Control and Performance Assessment of Isolated Bridges Using Integration of Negative Stiffness and Inerter-Based Supplemental Control Devices
    typeJournal Article
    journal volume10
    journal issue4
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.RUENG-1360
    journal fristpage04024067-1
    journal lastpage04024067-15
    page15
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian