YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Protocol for the Validation of Models for Regional Risk Analysis

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 004::page 04024069-1
    Author:
    Yun-Chi Yu
    ,
    Neetesh Sharma
    ,
    Paolo Gardoni
    DOI: 10.1061/AJRUA6.RUENG-1307
    Publisher: American Society of Civil Engineers
    Abstract: Regional risk analysis provides information for decisions made by communities, state and federal agencies, and the insurance industry. The analyses involve comprehensive prediction models, including nested models in complex multistep procedures. While numerous models are available, they are often not validated due to limited data availability and measurement challenges. However, validation is crucial since inaccurate predictions may result in suboptimal decisions. Thus, this paper proposes three measures to validate the predictive ability of models used in regional risk analysis (i.e., the Accuracy Likelihood, Prediction Error, and Distribution Match). The Accuracy Likelihood quantifies the probability of observing the recorded data under the predictive model’s hypotheses/assumptions. The Prediction Error measures the difference between the recorded value and values predicted by a model. The Distribution Match measures the similarity between the probability distributions of the predicted quantities and the corresponding empirical distributions of the recorded data. As an example, we check the predictive validity of seismic risk analysis models using data from the 2016 Kumamoto earthquake in Mashiki City, Kumamoto, Japan. We consider three sets of models [i.e., from HAZUS, MAEViz, and local Kumamoto Prefecture Models (KPM)] to predict the ground motion intensity, and physical damage on buildings, bridges, electric power infrastructure, and potable water and wastewater infrastructure. The comparison shows the predictive power of some of the available models and drives future research toward essential enhancements.
    • Download: (7.829Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Protocol for the Validation of Models for Regional Risk Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303772
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorYun-Chi Yu
    contributor authorNeetesh Sharma
    contributor authorPaolo Gardoni
    date accessioned2025-04-20T09:58:56Z
    date available2025-04-20T09:58:56Z
    date copyright9/30/2024 12:00:00 AM
    date issued2024
    identifier otherAJRUA6.RUENG-1307.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303772
    description abstractRegional risk analysis provides information for decisions made by communities, state and federal agencies, and the insurance industry. The analyses involve comprehensive prediction models, including nested models in complex multistep procedures. While numerous models are available, they are often not validated due to limited data availability and measurement challenges. However, validation is crucial since inaccurate predictions may result in suboptimal decisions. Thus, this paper proposes three measures to validate the predictive ability of models used in regional risk analysis (i.e., the Accuracy Likelihood, Prediction Error, and Distribution Match). The Accuracy Likelihood quantifies the probability of observing the recorded data under the predictive model’s hypotheses/assumptions. The Prediction Error measures the difference between the recorded value and values predicted by a model. The Distribution Match measures the similarity between the probability distributions of the predicted quantities and the corresponding empirical distributions of the recorded data. As an example, we check the predictive validity of seismic risk analysis models using data from the 2016 Kumamoto earthquake in Mashiki City, Kumamoto, Japan. We consider three sets of models [i.e., from HAZUS, MAEViz, and local Kumamoto Prefecture Models (KPM)] to predict the ground motion intensity, and physical damage on buildings, bridges, electric power infrastructure, and potable water and wastewater infrastructure. The comparison shows the predictive power of some of the available models and drives future research toward essential enhancements.
    publisherAmerican Society of Civil Engineers
    titleProtocol for the Validation of Models for Regional Risk Analysis
    typeJournal Article
    journal volume10
    journal issue4
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.RUENG-1307
    journal fristpage04024069-1
    journal lastpage04024069-20
    page20
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2024:;Volume ( 010 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian