YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance-Based Risk Assessment for Large-Scale Transportation Networks Using the Transitional Markov Chain Monte Carlo Method

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2025:;Volume ( 011 ):;issue: 001::page 04024090-1
    Author:
    Anteneh Z. Deriba
    ,
    David Y. Yang
    DOI: 10.1061/AJRUA6.RUENG-1402
    Publisher: American Society of Civil Engineers
    Abstract: Accurately assessing failure risk due to asset deterioration and/or extreme events is essential for efficient transportation asset management. Traditional risk assessment is conducted for individual assets by either focusing on the economic risk to asset owners or relying on empirical proxies of systemwide consequences. Risk assessment directly based on system performance (e.g., network capacity) is largely limited due to (1) an exponentially increasing number of system states for accurate performance evaluation, (2) potential contribution of system states with low likelihood yet high consequences (i.e., gray swan events) to system risk, and (3) lack of actionable information for asset management from risk assessment results. To address these challenges, this paper introduces a novel approach to performance-based risk assessment for large-scale transportation networks. The new approach is underpinned by the transitional Markov chain Monte Carlo (TMCMC) method, a sequential sampling technique originally developed for Bayesian updating. The risk assessment problem is reformulated such that (1) the system risk becomes the normalizing term (i.e., evidence) of a high-dimensional posterior distribution, and (2) the final posterior samples from TMCMC yield risk-based importance measures for different assets. Two types of analytical examples are developed to demonstrate the effectiveness and efficiency of the proposed approach as the number of assets increases and the influence of gray swan events grows. The new approach is further applied in a case study on the Oregon highway network, serving as a real-world example of large-scale transportation networks.
    • Download: (1.234Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance-Based Risk Assessment for Large-Scale Transportation Networks Using the Transitional Markov Chain Monte Carlo Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303713
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering

    Show full item record

    contributor authorAnteneh Z. Deriba
    contributor authorDavid Y. Yang
    date accessioned2025-04-20T09:56:57Z
    date available2025-04-20T09:56:57Z
    date copyright12/4/2024 12:00:00 AM
    date issued2025
    identifier otherAJRUA6.RUENG-1402.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303713
    description abstractAccurately assessing failure risk due to asset deterioration and/or extreme events is essential for efficient transportation asset management. Traditional risk assessment is conducted for individual assets by either focusing on the economic risk to asset owners or relying on empirical proxies of systemwide consequences. Risk assessment directly based on system performance (e.g., network capacity) is largely limited due to (1) an exponentially increasing number of system states for accurate performance evaluation, (2) potential contribution of system states with low likelihood yet high consequences (i.e., gray swan events) to system risk, and (3) lack of actionable information for asset management from risk assessment results. To address these challenges, this paper introduces a novel approach to performance-based risk assessment for large-scale transportation networks. The new approach is underpinned by the transitional Markov chain Monte Carlo (TMCMC) method, a sequential sampling technique originally developed for Bayesian updating. The risk assessment problem is reformulated such that (1) the system risk becomes the normalizing term (i.e., evidence) of a high-dimensional posterior distribution, and (2) the final posterior samples from TMCMC yield risk-based importance measures for different assets. Two types of analytical examples are developed to demonstrate the effectiveness and efficiency of the proposed approach as the number of assets increases and the influence of gray swan events grows. The new approach is further applied in a case study on the Oregon highway network, serving as a real-world example of large-scale transportation networks.
    publisherAmerican Society of Civil Engineers
    titlePerformance-Based Risk Assessment for Large-Scale Transportation Networks Using the Transitional Markov Chain Monte Carlo Method
    typeJournal Article
    journal volume11
    journal issue1
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
    identifier doi10.1061/AJRUA6.RUENG-1402
    journal fristpage04024090-1
    journal lastpage04024090-12
    page12
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering:;2025:;Volume ( 011 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian