YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Uncertainty Quantification of Process-Property-Structure Linkage for Fused Filament Fabrication Parts

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 010 ):;issue: 003::page 31102-1
    Author:
    Zhang, Yongjie
    ,
    Moon, Seung Ki
    DOI: 10.1115/1.4065443
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Due to the nature of additive manufacturing (AM), design and manufacturing are deeply coupled. Toolpaths are defined based on the part geometry, and in turn, these toolpaths can influence the bonding between adjacent toolpaths, especially for fused filament fabrication (FFF) process. In FFF, bonding between adjacent rasters is critical to the FFF part mechanical strength. The bonding is driven by factors such as thermal history and a deposition strategy, which are dictated by the geometry of a part and process parameters. In this research, a data-driven physics-based methodology is proposed to predict the mechanical properties of FFF parts using Bayesian inference. In the proposed methodology, geometry and variance in process parameters are used to quantify uncertainties in the mechanical properties. Empirical data derived from the mesostructure of specimens are utilized to generate priors of predictors. Hamilton Monte Carlo is then used to sample the posterior distribution. Subsequently, random draw from posterior predictive distribution is performed, and the results are validated against empirical data to establish the accuracy of the proposed methodology. The proposed methodology can provide more accurate prediction of the mechanical properties by considering the influence of geometry, process parameters and uncertainty in AM process.
    • Download: (3.574Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Uncertainty Quantification of Process-Property-Structure Linkage for Fused Filament Fabrication Parts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303694
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorZhang, Yongjie
    contributor authorMoon, Seung Ki
    date accessioned2024-12-24T19:18:12Z
    date available2024-12-24T19:18:12Z
    date copyright5/28/2024 12:00:00 AM
    date issued2024
    identifier issn2332-9017
    identifier otherrisk_010_03_031102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303694
    description abstractDue to the nature of additive manufacturing (AM), design and manufacturing are deeply coupled. Toolpaths are defined based on the part geometry, and in turn, these toolpaths can influence the bonding between adjacent toolpaths, especially for fused filament fabrication (FFF) process. In FFF, bonding between adjacent rasters is critical to the FFF part mechanical strength. The bonding is driven by factors such as thermal history and a deposition strategy, which are dictated by the geometry of a part and process parameters. In this research, a data-driven physics-based methodology is proposed to predict the mechanical properties of FFF parts using Bayesian inference. In the proposed methodology, geometry and variance in process parameters are used to quantify uncertainties in the mechanical properties. Empirical data derived from the mesostructure of specimens are utilized to generate priors of predictors. Hamilton Monte Carlo is then used to sample the posterior distribution. Subsequently, random draw from posterior predictive distribution is performed, and the results are validated against empirical data to establish the accuracy of the proposed methodology. The proposed methodology can provide more accurate prediction of the mechanical properties by considering the influence of geometry, process parameters and uncertainty in AM process.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUncertainty Quantification of Process-Property-Structure Linkage for Fused Filament Fabrication Parts
    typeJournal Paper
    journal volume10
    journal issue3
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4065443
    journal fristpage31102-1
    journal lastpage31102-9
    page9
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 010 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian