YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Hierarchical Fault Diagnosis Model for Planetary Gearbox With Shift-Invariant Dictionary and OMPAN

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 010 ):;issue: 003::page 31101-1
    Author:
    Chen, Ronghua
    ,
    Gu, Yingkui
    ,
    Huang, Peng
    ,
    Chen, Junjie
    ,
    Qiu, Guangqi
    DOI: 10.1115/1.4065442
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Planetary gearbox has been widely applied in the mechanical transmission system, and the failure types of planetary gearbox are more and more diversified. The conventional fault diagnosis methods focus on identifying the faults in the fault library, but ignored the faults outside the fault library. However, it is impossible to build a fault library for all failure types. Targeting the problem of identifying the faults outside the fault library, a hierarchical fault diagnosis method for planetary gearbox with shift-invariant dictionary and orthogonal matching pursuit with adaptive noise (OMPAN) is proposed in this paper. By k-means singular value decomposition (K-SVD) dictionary learning method and shift-invariant strategy, a shift-invariant dictionary is constructed so that the normal modulation components of signals can be completed decomposed. OMPAN algorithm is proposed, which uses the white Gaussian noise to improve the solution method of the orthogonal matching pursuit (OMP) algorithm so that it can separate the modulation components in the signal more accurately. The fault feature extraction is developed via shift-invariant dictionary and OMPAN. A hierarchical classifier is proposed with three subclassifiers so that both the faults in the fault library and the faults outside the fault library are identified. The effectiveness of the proposed hierarchical fault diagnosis method is validated by experiments. Result show that the proposed shift-invariant dictionary and OMPAN method has achieved a superior performance in highlighting fault features compared with other two sparse decomposition methods. The proposed hierarchical fault diagnosis approach has achieved a good performance both in classification of the faults in the fault library and identification of the faults outside the fault library.
    • Download: (2.925Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Hierarchical Fault Diagnosis Model for Planetary Gearbox With Shift-Invariant Dictionary and OMPAN

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303692
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorChen, Ronghua
    contributor authorGu, Yingkui
    contributor authorHuang, Peng
    contributor authorChen, Junjie
    contributor authorQiu, Guangqi
    date accessioned2024-12-24T19:18:08Z
    date available2024-12-24T19:18:08Z
    date copyright5/28/2024 12:00:00 AM
    date issued2024
    identifier issn2332-9017
    identifier otherrisk_010_03_031101.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303692
    description abstractPlanetary gearbox has been widely applied in the mechanical transmission system, and the failure types of planetary gearbox are more and more diversified. The conventional fault diagnosis methods focus on identifying the faults in the fault library, but ignored the faults outside the fault library. However, it is impossible to build a fault library for all failure types. Targeting the problem of identifying the faults outside the fault library, a hierarchical fault diagnosis method for planetary gearbox with shift-invariant dictionary and orthogonal matching pursuit with adaptive noise (OMPAN) is proposed in this paper. By k-means singular value decomposition (K-SVD) dictionary learning method and shift-invariant strategy, a shift-invariant dictionary is constructed so that the normal modulation components of signals can be completed decomposed. OMPAN algorithm is proposed, which uses the white Gaussian noise to improve the solution method of the orthogonal matching pursuit (OMP) algorithm so that it can separate the modulation components in the signal more accurately. The fault feature extraction is developed via shift-invariant dictionary and OMPAN. A hierarchical classifier is proposed with three subclassifiers so that both the faults in the fault library and the faults outside the fault library are identified. The effectiveness of the proposed hierarchical fault diagnosis method is validated by experiments. Result show that the proposed shift-invariant dictionary and OMPAN method has achieved a superior performance in highlighting fault features compared with other two sparse decomposition methods. The proposed hierarchical fault diagnosis approach has achieved a good performance both in classification of the faults in the fault library and identification of the faults outside the fault library.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Hierarchical Fault Diagnosis Model for Planetary Gearbox With Shift-Invariant Dictionary and OMPAN
    typeJournal Paper
    journal volume10
    journal issue3
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4065442
    journal fristpage31101-1
    journal lastpage31101-11
    page11
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2024:;volume( 010 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian