YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparative Analysis of Bursting Pressure Prediction Methods for Steam Generator Tube With Volume Defect

    Source: Journal of Pressure Vessel Technology:;2024:;volume( 146 ):;issue: 002::page 21701-1
    Author:
    Han, Yile
    ,
    Huang, Song
    ,
    Hui, Hu
    DOI: 10.1115/1.4064699
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper compares the difference and accuracy of bursting pressure prediction based on the flow stress σf prediction method, plastic collapse prediction method, and ductile damage model prediction method in Inconel 690 steam generator tube (SGT) with volume defect. The tensile and smooth tube bursting tests determine the parameters required for the three prediction methods. The three methods predict the bursting pressures for four deep volume defects in SGT. The results are compared and analyzed with the experimental data. The results show that the ductile damage model prediction method is the best to predict the SGT bursting pressure error with volume defects simulating the structure's deformation and damage failure process.
    • Download: (2.261Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparative Analysis of Bursting Pressure Prediction Methods for Steam Generator Tube With Volume Defect

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303653
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorHan, Yile
    contributor authorHuang, Song
    contributor authorHui, Hu
    date accessioned2024-12-24T19:17:02Z
    date available2024-12-24T19:17:02Z
    date copyright2/26/2024 12:00:00 AM
    date issued2024
    identifier issn0094-9930
    identifier otherpvt_146_02_021701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303653
    description abstractThis paper compares the difference and accuracy of bursting pressure prediction based on the flow stress σf prediction method, plastic collapse prediction method, and ductile damage model prediction method in Inconel 690 steam generator tube (SGT) with volume defect. The tensile and smooth tube bursting tests determine the parameters required for the three prediction methods. The three methods predict the bursting pressures for four deep volume defects in SGT. The results are compared and analyzed with the experimental data. The results show that the ductile damage model prediction method is the best to predict the SGT bursting pressure error with volume defects simulating the structure's deformation and damage failure process.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparative Analysis of Bursting Pressure Prediction Methods for Steam Generator Tube With Volume Defect
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4064699
    journal fristpage21701-1
    journal lastpage21701-9
    page9
    treeJournal of Pressure Vessel Technology:;2024:;volume( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian