YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Properties of Buried Steel Pipe With Polyurethane Isolation Layer Under Strike-Slip Fault

    Source: Journal of Pressure Vessel Technology:;2023:;volume( 146 ):;issue: 001::page 11901-1
    Author:
    Xue, Jinghong
    ,
    Ji, Li
    DOI: 10.1115/1.4063976
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Long-distance buried pipelines are one of the most common and economical transportation methods for oil and gas, but the fault movement will pose a threat to the safety of pipelines. The main challenge of pipeline under strike-slip faults is to improve the ability of resistance to fault dislocation, and the main aim of the study is how to improve the critical fault displacement of pipelines with the help of polyurethane isolation layer. Three-dimensional finite element models were proposed for mechanical analysis of X80 buried steel pipe with polyurethane isolation layer under strike-slip fault. The influence of factors on the mechanical properties of pipelines were studied, such as thickness of isolation layer, internal pressure, fault displacement, diameter-thickness ratio, and the angle of pipe and fault line. The simulation results indicate that with the increase of the thickness of the isolation layer, the development of the maximum tensile and compressive strain of the pipeline is significantly reduced for the same fault displacement, resulting in a significant increase in the critical fault displacement corresponding to the three failure modes of the pipeline. As the ratio of diameter to thickness and internal pressure decrease, the critical displacements decrease. When designing and planning the pipeline, pipeline is recommended with the seismic isolation layer, large wall thickness, and the crossing-angle at 70 deg∼80 deg. The research provided a reference for judgment of earthquake resistance, failure analysis, and safety design of pipelines with polyurethane isolation layer crossing strike-slip faults.
    • Download: (3.537Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Properties of Buried Steel Pipe With Polyurethane Isolation Layer Under Strike-Slip Fault

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303648
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorXue, Jinghong
    contributor authorJi, Li
    date accessioned2024-12-24T19:16:53Z
    date available2024-12-24T19:16:53Z
    date copyright11/22/2023 12:00:00 AM
    date issued2023
    identifier issn0094-9930
    identifier otherpvt_146_01_011901.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303648
    description abstractLong-distance buried pipelines are one of the most common and economical transportation methods for oil and gas, but the fault movement will pose a threat to the safety of pipelines. The main challenge of pipeline under strike-slip faults is to improve the ability of resistance to fault dislocation, and the main aim of the study is how to improve the critical fault displacement of pipelines with the help of polyurethane isolation layer. Three-dimensional finite element models were proposed for mechanical analysis of X80 buried steel pipe with polyurethane isolation layer under strike-slip fault. The influence of factors on the mechanical properties of pipelines were studied, such as thickness of isolation layer, internal pressure, fault displacement, diameter-thickness ratio, and the angle of pipe and fault line. The simulation results indicate that with the increase of the thickness of the isolation layer, the development of the maximum tensile and compressive strain of the pipeline is significantly reduced for the same fault displacement, resulting in a significant increase in the critical fault displacement corresponding to the three failure modes of the pipeline. As the ratio of diameter to thickness and internal pressure decrease, the critical displacements decrease. When designing and planning the pipeline, pipeline is recommended with the seismic isolation layer, large wall thickness, and the crossing-angle at 70 deg∼80 deg. The research provided a reference for judgment of earthquake resistance, failure analysis, and safety design of pipelines with polyurethane isolation layer crossing strike-slip faults.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMechanical Properties of Buried Steel Pipe With Polyurethane Isolation Layer Under Strike-Slip Fault
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4063976
    journal fristpage11901-1
    journal lastpage11901-10
    page10
    treeJournal of Pressure Vessel Technology:;2023:;volume( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian