YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Improved Fixture to Quantify Corrosion in Bolted Flanged Gasketed Joints

    Source: Journal of Pressure Vessel Technology:;2023:;volume( 146 ):;issue: 001::page 11302-1
    Author:
    Hakimian, Soroosh
    ,
    Bouzid, Abdel-Hakim
    ,
    Hof, Lucas A.
    DOI: 10.1115/1.4063975
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study discusses the corrosion behavior of bolted flanged gasketed joint systems. A novel fixture is proposed to quantify the corrosion at the gasket–flange interface under service conditions. Due to the presence of crevices and potential differences between gaskets and flanges, corrosion widely occurs in such joints. Crevice corrosion and galvanic corrosion can create paths to leakage of the pressurized fluid and may cause catastrophic failure. Corrosion in bolted gasketed joints was investigated previously; however, the effects of the operating conditions were not reported. Operating conditions include fluid flow, pressure, pH, conductivity, temperature, and average gasket contact stress. This study starts by introducing a new experimental setup to examine the corrosion behavior of bolted flanged gasketed joints. The developed fixture consists of a pressurized bolted gasketed joint that enables real-time monitoring and recording of the corrosion parameters under the influence of service conditions. Second, potentiodynamic polarization testing is conducted to measure the corrosion rate and obtain data on the corrosion behavior of a pair of flange and gasket materials. These tests are performed using the novel setup that reproduces the behavior of industrial bolted flanged gasketed joint systems. It consists of a working electrode (flange material), a reference electrode (Ag/AgCl), and an auxiliary electrode (a stainless steel rod). Three types of graphite gaskets compressed in the fixture are subject to electrochemical corrosion tests with a 0.6 M NaCl solution. The morphology of the specimen's corroded surfaces is examined via confocal laser microscopy.
    • Download: (3.879Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Improved Fixture to Quantify Corrosion in Bolted Flanged Gasketed Joints

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303646
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorHakimian, Soroosh
    contributor authorBouzid, Abdel-Hakim
    contributor authorHof, Lucas A.
    date accessioned2024-12-24T19:16:50Z
    date available2024-12-24T19:16:50Z
    date copyright11/22/2023 12:00:00 AM
    date issued2023
    identifier issn0094-9930
    identifier otherpvt_146_01_011302.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303646
    description abstractThis study discusses the corrosion behavior of bolted flanged gasketed joint systems. A novel fixture is proposed to quantify the corrosion at the gasket–flange interface under service conditions. Due to the presence of crevices and potential differences between gaskets and flanges, corrosion widely occurs in such joints. Crevice corrosion and galvanic corrosion can create paths to leakage of the pressurized fluid and may cause catastrophic failure. Corrosion in bolted gasketed joints was investigated previously; however, the effects of the operating conditions were not reported. Operating conditions include fluid flow, pressure, pH, conductivity, temperature, and average gasket contact stress. This study starts by introducing a new experimental setup to examine the corrosion behavior of bolted flanged gasketed joints. The developed fixture consists of a pressurized bolted gasketed joint that enables real-time monitoring and recording of the corrosion parameters under the influence of service conditions. Second, potentiodynamic polarization testing is conducted to measure the corrosion rate and obtain data on the corrosion behavior of a pair of flange and gasket materials. These tests are performed using the novel setup that reproduces the behavior of industrial bolted flanged gasketed joint systems. It consists of a working electrode (flange material), a reference electrode (Ag/AgCl), and an auxiliary electrode (a stainless steel rod). Three types of graphite gaskets compressed in the fixture are subject to electrochemical corrosion tests with a 0.6 M NaCl solution. The morphology of the specimen's corroded surfaces is examined via confocal laser microscopy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Improved Fixture to Quantify Corrosion in Bolted Flanged Gasketed Joints
    typeJournal Paper
    journal volume146
    journal issue1
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4063975
    journal fristpage11302-1
    journal lastpage11302-8
    page8
    treeJournal of Pressure Vessel Technology:;2023:;volume( 146 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian