Performance of Borated Centrifugally Tensioned Metastable Fluid Detector Versus Ludlum 42-49B, Fuji NSN3 Detectors for Fission Energy Spectrum Neutron Detection With the Source Within Lead/Concrete Shielded ConfigurationsSource: Journal of Nuclear Engineering and Radiation Science:;2024:;volume( 010 ):;issue: 004::page 42002-1DOI: 10.1115/1.4065853Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: This paper presents the results of neutron detection efficiency and dosimetry between a borated centrifugally tensioned metastable fluid detector (B-CTMFD) configured to detect thermal to fast neutrons versus two widely used neutron detection devices of similar form factors: moderated He-3 based Ludlum-42-49B neutron detector, and, the Fuji Electric's NSN3TM (NNSN3) pressurized nitrogen-methane filled neutron detector. The one-on-one performance comparisons were conducted using soft (Cf-252 fission) neutron spectrum isotope neutron sources positioned behind various levels of lead and concrete shielding ranging in thickness from 0 cm (unshielded) to up to 30 cm. The comparisons were conducted with Monte Carlo N-Particle transport code (MCNP) code simulations to account for three-dimensional effects and to relate the absolute detection rate with the dose rate—to derive the sensitivity factor (cpm/μSv/h). While the Ludlum 42-49B and NSN3 detectors operate at a fixed sensitivity setting, the centrifugally tensioned metastable fluid detector (CTMFD) can be (and was) operated to detect and separate the contributions from epithermal (0.02 eV–0.2 MeV) and from fast (>0.2 MeV) neutrons at various sensitivity levels by varying the tensioned metastable negative pressure (Pneg) from 0.3 MPa to 0.7 MPa. The B-CTMFD (configured for detecting the full 0.02 eV to 12 MeV neutrons >0.1 MeV neutron detection at Pneg = 0.7 MPa) offered relative sensitivity enhancements of up to ∼22× greater than Ludlum and over 5× greater than NSN3, over the 0-15 cm range of Pb shielding, and the 0–30 cm concrete shield thickness. The contribution from detecting down scattered neutrons increases with increased thickness, especially for concrete shielding. The B-CTMFD design overcomes the detection penalty (up to 60% depending on shielding type and thickness) inherent in the nonborated centrifugally tensioned metastable fluid detector (NB-CTMFD), designed only to detect fast-energy neutrons—as described in the companion (Part-1) paper. However, unlike the NB-CTMFD, which used 100% decafluorapentane (DFP) (C5H2F10), the B-CTMFD requires the use of an azeotropic mixture of DFP, methanol, and tri-methyl borate (TMB—C3H9BO3, using natural boron) in 80:4:16 proportion. The B-CTMFD was about 6 times more sensitive than NB-CTMFD under the most heavily shielded condition and, taken together, also offered 2-energy bin neutron spectroscopic enablement, together with 22-5× higher absolute efficiency and relative sensitivity compared with the nonspectroscopic Ludlum (He-3) and NSN3 (methane-nitrogen) based detectors. From an intrinsic efficiency standpoint, the B-CTMFD operating at Pneg = 0.7 MPa state demonstrated ∼103× higher intrinsic efficiency over Ludlum 42-49B and NSN3 detectors, respectively.
|
Show full item record
contributor author | Ota, Yusuke | |
contributor author | Taleyarkhan, Rusi P. | |
date accessioned | 2024-12-24T19:16:01Z | |
date available | 2024-12-24T19:16:01Z | |
date copyright | 7/16/2024 12:00:00 AM | |
date issued | 2024 | |
identifier issn | 2332-8983 | |
identifier other | ners_010_04_042002.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4303615 | |
description abstract | This paper presents the results of neutron detection efficiency and dosimetry between a borated centrifugally tensioned metastable fluid detector (B-CTMFD) configured to detect thermal to fast neutrons versus two widely used neutron detection devices of similar form factors: moderated He-3 based Ludlum-42-49B neutron detector, and, the Fuji Electric's NSN3TM (NNSN3) pressurized nitrogen-methane filled neutron detector. The one-on-one performance comparisons were conducted using soft (Cf-252 fission) neutron spectrum isotope neutron sources positioned behind various levels of lead and concrete shielding ranging in thickness from 0 cm (unshielded) to up to 30 cm. The comparisons were conducted with Monte Carlo N-Particle transport code (MCNP) code simulations to account for three-dimensional effects and to relate the absolute detection rate with the dose rate—to derive the sensitivity factor (cpm/μSv/h). While the Ludlum 42-49B and NSN3 detectors operate at a fixed sensitivity setting, the centrifugally tensioned metastable fluid detector (CTMFD) can be (and was) operated to detect and separate the contributions from epithermal (0.02 eV–0.2 MeV) and from fast (>0.2 MeV) neutrons at various sensitivity levels by varying the tensioned metastable negative pressure (Pneg) from 0.3 MPa to 0.7 MPa. The B-CTMFD (configured for detecting the full 0.02 eV to 12 MeV neutrons >0.1 MeV neutron detection at Pneg = 0.7 MPa) offered relative sensitivity enhancements of up to ∼22× greater than Ludlum and over 5× greater than NSN3, over the 0-15 cm range of Pb shielding, and the 0–30 cm concrete shield thickness. The contribution from detecting down scattered neutrons increases with increased thickness, especially for concrete shielding. The B-CTMFD design overcomes the detection penalty (up to 60% depending on shielding type and thickness) inherent in the nonborated centrifugally tensioned metastable fluid detector (NB-CTMFD), designed only to detect fast-energy neutrons—as described in the companion (Part-1) paper. However, unlike the NB-CTMFD, which used 100% decafluorapentane (DFP) (C5H2F10), the B-CTMFD requires the use of an azeotropic mixture of DFP, methanol, and tri-methyl borate (TMB—C3H9BO3, using natural boron) in 80:4:16 proportion. The B-CTMFD was about 6 times more sensitive than NB-CTMFD under the most heavily shielded condition and, taken together, also offered 2-energy bin neutron spectroscopic enablement, together with 22-5× higher absolute efficiency and relative sensitivity compared with the nonspectroscopic Ludlum (He-3) and NSN3 (methane-nitrogen) based detectors. From an intrinsic efficiency standpoint, the B-CTMFD operating at Pneg = 0.7 MPa state demonstrated ∼103× higher intrinsic efficiency over Ludlum 42-49B and NSN3 detectors, respectively. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Performance of Borated Centrifugally Tensioned Metastable Fluid Detector Versus Ludlum 42-49B, Fuji NSN3 Detectors for Fission Energy Spectrum Neutron Detection With the Source Within Lead/Concrete Shielded Configurations | |
type | Journal Paper | |
journal volume | 10 | |
journal issue | 4 | |
journal title | Journal of Nuclear Engineering and Radiation Science | |
identifier doi | 10.1115/1.4065853 | |
journal fristpage | 42002-1 | |
journal lastpage | 42002-9 | |
page | 9 | |
tree | Journal of Nuclear Engineering and Radiation Science:;2024:;volume( 010 ):;issue: 004 | |
contenttype | Fulltext |