YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of Uterus Active Contraction and Fetus Delivery in ls-dyna

    Source: Journal of Biomechanical Engineering:;2024:;volume( 146 ):;issue: 010::page 101002-1
    Author:
    Tao, Ru
    ,
    Grimm, Michele
    DOI: 10.1115/1.4065341
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Vaginal childbirth is the final phase of pregnancy when one or more fetuses pass through the birth canal from the uterus, and it is a biomechanical process. The uterine active contraction, causing the pushing force on the fetus, plays a vital role in regulating the fetus delivery process. In this project, the active contraction behaviors of muscle tissue were first modeled and investigated. After that, a finite element method (FEM) model to simulate the uterine cyclic active contraction and delivery of a fetus was developed in ls-dyna. The active contraction was driven through contractile fibers modeled as one-dimensional truss elements, with the Hill material model governing their response. Fibers were assembled in the longitudinal, circumferential, and normal (transverse) directions to correspond to tissue microstructure, and they were divided into seven regions to represent the strong anisotropy of the fiber distribution and activity within the uterus. The passive portion of the uterine tissue was modeled with a Neo Hookean hyperelastic material model. Three active contraction cycles were modeled. The cyclic uterine active contraction behaviors were analyzed. Finally, the fetus delivery through the uterus was simulated. The model of the uterine active contraction presented in this paper modeled the contractile fibers in three-dimensions, considered the anisotropy of the fiber distribution, provided the uterine cyclic active contraction and propagation of the contraction waves, performed a large deformation, and caused the pushing effect on the fetus. This model will be combined with a model of pelvic structures so that a complete system simulating the second stage of the delivery process of a fetus can be established.
    • Download: (5.675Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of Uterus Active Contraction and Fetus Delivery in ls-dyna

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303571
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorTao, Ru
    contributor authorGrimm, Michele
    date accessioned2024-12-24T19:14:38Z
    date available2024-12-24T19:14:38Z
    date copyright5/13/2024 12:00:00 AM
    date issued2024
    identifier issn0148-0731
    identifier otherbio_146_10_101002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303571
    description abstractVaginal childbirth is the final phase of pregnancy when one or more fetuses pass through the birth canal from the uterus, and it is a biomechanical process. The uterine active contraction, causing the pushing force on the fetus, plays a vital role in regulating the fetus delivery process. In this project, the active contraction behaviors of muscle tissue were first modeled and investigated. After that, a finite element method (FEM) model to simulate the uterine cyclic active contraction and delivery of a fetus was developed in ls-dyna. The active contraction was driven through contractile fibers modeled as one-dimensional truss elements, with the Hill material model governing their response. Fibers were assembled in the longitudinal, circumferential, and normal (transverse) directions to correspond to tissue microstructure, and they were divided into seven regions to represent the strong anisotropy of the fiber distribution and activity within the uterus. The passive portion of the uterine tissue was modeled with a Neo Hookean hyperelastic material model. Three active contraction cycles were modeled. The cyclic uterine active contraction behaviors were analyzed. Finally, the fetus delivery through the uterus was simulated. The model of the uterine active contraction presented in this paper modeled the contractile fibers in three-dimensions, considered the anisotropy of the fiber distribution, provided the uterine cyclic active contraction and propagation of the contraction waves, performed a large deformation, and caused the pushing effect on the fetus. This model will be combined with a model of pelvic structures so that a complete system simulating the second stage of the delivery process of a fetus can be established.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSimulation of Uterus Active Contraction and Fetus Delivery in ls-dyna
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4065341
    journal fristpage101002-1
    journal lastpage101002-10
    page10
    treeJournal of Biomechanical Engineering:;2024:;volume( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian