Design, Fabrication, and Validation of a Portable Perturbation Treadmill for Balance Recovery ResearchSource: Journal of Medical Devices:;2024:;volume( 018 ):;issue: 002::page 21005-1DOI: 10.1115/1.4065514Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Trips and falls are a major concern for older adults. The resulting injury and loss of mobility can have a significant impact on quality of life. An emerging field of study, known as Perturbation Training, has been shown to reduce injury rates associated with trips and falls in older adults. Treadmills traditionally used for Perturbation Training are large, expensive, and immobile, forcing users to travel long distances to receive care. A portable treadmill would serve a larger portion of the at-risk population than current methods. We developed a portable, low-cost, twin-belt perturbation treadmill capable of high-intensity Perturbation Training. Belt speeds are controlled by a custom mechanical and software interface, allowing operators with no programming experience to control the device. The treadmill can accommodate users up to 118 kg and provides a maximum acceleration and speed of 12 m/s2 and 3.3 m/s, respectively, under full load. The total weight is 180 kg, and the treadmill can be moved like a wheelbarrow, with handles in the back and wheels in the front. The prototype was validated with mechanical and human participant testing, showing it as a viable device for Perturbation Training. In this paper, we will go over the design, fabrication, and validation processes used to create the Portable Perturbation Treadmill.
|
Collections
Show full item record
contributor author | Knutson, Robert G. | |
contributor author | Whitten, Justin | |
contributor author | Graham, David | |
contributor author | Shankwitz, Craig | |
contributor author | Pew, Corey A. | |
date accessioned | 2024-12-24T19:14:28Z | |
date available | 2024-12-24T19:14:28Z | |
date copyright | 5/30/2024 12:00:00 AM | |
date issued | 2024 | |
identifier issn | 1932-6181 | |
identifier other | med_018_02_021005.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4303565 | |
description abstract | Trips and falls are a major concern for older adults. The resulting injury and loss of mobility can have a significant impact on quality of life. An emerging field of study, known as Perturbation Training, has been shown to reduce injury rates associated with trips and falls in older adults. Treadmills traditionally used for Perturbation Training are large, expensive, and immobile, forcing users to travel long distances to receive care. A portable treadmill would serve a larger portion of the at-risk population than current methods. We developed a portable, low-cost, twin-belt perturbation treadmill capable of high-intensity Perturbation Training. Belt speeds are controlled by a custom mechanical and software interface, allowing operators with no programming experience to control the device. The treadmill can accommodate users up to 118 kg and provides a maximum acceleration and speed of 12 m/s2 and 3.3 m/s, respectively, under full load. The total weight is 180 kg, and the treadmill can be moved like a wheelbarrow, with handles in the back and wheels in the front. The prototype was validated with mechanical and human participant testing, showing it as a viable device for Perturbation Training. In this paper, we will go over the design, fabrication, and validation processes used to create the Portable Perturbation Treadmill. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Design, Fabrication, and Validation of a Portable Perturbation Treadmill for Balance Recovery Research | |
type | Journal Paper | |
journal volume | 18 | |
journal issue | 2 | |
journal title | Journal of Medical Devices | |
identifier doi | 10.1115/1.4065514 | |
journal fristpage | 21005-1 | |
journal lastpage | 21005-6 | |
page | 6 | |
tree | Journal of Medical Devices:;2024:;volume( 018 ):;issue: 002 | |
contenttype | Fulltext |