YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design Optimization of Lattice Structures Under Impact Loading for Additive Manufacturing

    Source: Journal of Mechanical Design:;2024:;volume( 146 ):;issue: 011::page 111701-1
    Author:
    Hertlein, Nathan
    ,
    Vemaganti, Kumar
    ,
    Anand, Sam
    DOI: 10.1115/1.4065065
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Additive manufacturing (AM) has enabled the production of intricate lattice structures with excellent performance and minimal mass. Design approaches that consider static loading, including lattice-based topology optimization (TO), have been well-researched recently. However, to date, there appears to be no widely accepted method of optimizing lattice structures for high-strain rate loading, especially when the design for additive manufacturing (DFAM) principles are considered. This study proposes a computational framework for the design of lattice structures under specified impact loading. To manage dimensionality while achieving sufficient generality, a heuristic design space is developed that relies on traditional TO to govern the design's macrostructure and standard dimensioning to govern its mesostructure. DFAM principles are then incorporated into a Bayesian optimization scheme wrapped around traditional TO to achieve manufacturable designs that absorb high-impact loading. Because this approach does not require analytical gradient information, the framework can be used to optimize directly on complex objectives, such as injury metrics calculated from the acceleration curve. A series of case studies is formulated around a mass-performance tradeoff and involves individual unit cell design as well as full-part design. The proposed design parameterization is found to enable sufficient flexibility to achieve consistently good performance regardless of AM build orientation.
    • Download: (1.472Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design Optimization of Lattice Structures Under Impact Loading for Additive Manufacturing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303498
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorHertlein, Nathan
    contributor authorVemaganti, Kumar
    contributor authorAnand, Sam
    date accessioned2024-12-24T19:12:37Z
    date available2024-12-24T19:12:37Z
    date copyright4/9/2024 12:00:00 AM
    date issued2024
    identifier issn1050-0472
    identifier othermd_146_11_111701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303498
    description abstractAdditive manufacturing (AM) has enabled the production of intricate lattice structures with excellent performance and minimal mass. Design approaches that consider static loading, including lattice-based topology optimization (TO), have been well-researched recently. However, to date, there appears to be no widely accepted method of optimizing lattice structures for high-strain rate loading, especially when the design for additive manufacturing (DFAM) principles are considered. This study proposes a computational framework for the design of lattice structures under specified impact loading. To manage dimensionality while achieving sufficient generality, a heuristic design space is developed that relies on traditional TO to govern the design's macrostructure and standard dimensioning to govern its mesostructure. DFAM principles are then incorporated into a Bayesian optimization scheme wrapped around traditional TO to achieve manufacturable designs that absorb high-impact loading. Because this approach does not require analytical gradient information, the framework can be used to optimize directly on complex objectives, such as injury metrics calculated from the acceleration curve. A series of case studies is formulated around a mass-performance tradeoff and involves individual unit cell design as well as full-part design. The proposed design parameterization is found to enable sufficient flexibility to achieve consistently good performance regardless of AM build orientation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign Optimization of Lattice Structures Under Impact Loading for Additive Manufacturing
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4065065
    journal fristpage111701-1
    journal lastpage111701-14
    page14
    treeJournal of Mechanical Design:;2024:;volume( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian