YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparative Analysis of Optimal and Biomechanical Torque Control Strategies for Powered Knee Exoskeletons in Squat Lifting

    Source: Journal of Mechanisms and Robotics:;2023:;volume( 016 ):;issue: 008::page 81010-1
    Author:
    Arefeen, Asif
    ,
    Xiang, Yujiang
    DOI: 10.1115/1.4064234
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Exoskeletons have the ability to aid humans in physically demanding and injury-prone activities, such as lifting loads while squatting. However, despite their immense potential, the control of powered exoskeletons remains a persistent challenge. In this study, we first predict the human lifting motion and knee joint torque using an inverse dynamics optimization formulation with a two-dimensional (2D) human skeletal model. The design variables are human joint angle profiles. The normalized human joint torque squared is minimized subject to physical and lifting task constraints. After that, the biomechanical assistive knee exoskeleton torque is obtained by scaling the predicted human knee joint torque. Second, we also present a 2D human skeletal model with a powered knee exoskeleton for predicting the optimal assistive torque and lifting motion. The design variables are human joint angle profiles and exoskeleton motor current profiles. Then, the biomechanical and optimal exoskeleton torques are implemented in a powered knee exoskeleton in real-time to provide external assistance in human lifting motion. Finally, the biomechanical and optimal assistive exoskeleton torque controls for lifting are compared. It is observed that both control methods have a significant impact on reducing muscle activations for the specific muscle groups compared to the cases without the exoskeleton. Especially, peak activations of erector spinae and rectus femoris muscles are reduced by 57.79% and 47.26% with biomechanical assistive torque. Likewise, vastus medialis and vastus lateralis activations drop by 46.82% and 52.24% with optimal assistive torque.
    • Download: (1.434Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparative Analysis of Optimal and Biomechanical Torque Control Strategies for Powered Knee Exoskeletons in Squat Lifting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303393
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorArefeen, Asif
    contributor authorXiang, Yujiang
    date accessioned2024-12-24T19:09:28Z
    date available2024-12-24T19:09:28Z
    date copyright12/22/2023 12:00:00 AM
    date issued2023
    identifier issn1942-4302
    identifier otherjmr_16_8_081010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303393
    description abstractExoskeletons have the ability to aid humans in physically demanding and injury-prone activities, such as lifting loads while squatting. However, despite their immense potential, the control of powered exoskeletons remains a persistent challenge. In this study, we first predict the human lifting motion and knee joint torque using an inverse dynamics optimization formulation with a two-dimensional (2D) human skeletal model. The design variables are human joint angle profiles. The normalized human joint torque squared is minimized subject to physical and lifting task constraints. After that, the biomechanical assistive knee exoskeleton torque is obtained by scaling the predicted human knee joint torque. Second, we also present a 2D human skeletal model with a powered knee exoskeleton for predicting the optimal assistive torque and lifting motion. The design variables are human joint angle profiles and exoskeleton motor current profiles. Then, the biomechanical and optimal exoskeleton torques are implemented in a powered knee exoskeleton in real-time to provide external assistance in human lifting motion. Finally, the biomechanical and optimal assistive exoskeleton torque controls for lifting are compared. It is observed that both control methods have a significant impact on reducing muscle activations for the specific muscle groups compared to the cases without the exoskeleton. Especially, peak activations of erector spinae and rectus femoris muscles are reduced by 57.79% and 47.26% with biomechanical assistive torque. Likewise, vastus medialis and vastus lateralis activations drop by 46.82% and 52.24% with optimal assistive torque.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Comparative Analysis of Optimal and Biomechanical Torque Control Strategies for Powered Knee Exoskeletons in Squat Lifting
    typeJournal Paper
    journal volume16
    journal issue8
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4064234
    journal fristpage81010-1
    journal lastpage81010-11
    page11
    treeJournal of Mechanisms and Robotics:;2023:;volume( 016 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian