YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Carbon Footprint of Seawater Desalination Technologies: A Review

    Source: Journal of Energy Resources Technology:;2024:;volume( 146 ):;issue: 008::page 80801-1
    Author:
    Wang, Yongqing
    ,
    Morosuk, Tatiana
    ,
    Cao, Wensheng
    DOI: 10.1115/1.4065251
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: As an important and effective way of mitigating water shortages, desalination has steadily and rapidly increased its global capacity over the decades. This raises concern about its environmental impacts, especially its carbon footprint (CF). Although the CF of desalination has been extensively studied, the existing literature lacks reviews exclusively for it. To help fill the research gap, this study presents a comprehensive and up-to-date review of the CF of seawater desalination technologies, including the conventional reverse osmosis (RO), multi-stage flash (MSF), multi-effect distillation (MED), electrodialysis (ED), and mechanical vapor compression (MVC), and the emerging membrane distillation (MD) and humidification–dehumidification (HDH). To our knowledge, this is the first review that focuses on the CF of seawater desalination. A general procedure for assessing the CF of a desalination system is discussed. The CF data of 211 scenarios from 34 studies published from 2004 to 2023 are reviewed and analyzed, with special focuses on the CF of different technologies, the roles of different life-cycle phases and material/energy flows, and the mitigation measures. The results highlight the CF advantage of RO and low-carbon heat-driven MSF, MED, and MD, and emphasize the dominant role of the operational energy consumption (the amount, the form, and especially the source of the energy) in the CF of desalination. This review improves the understanding of the CF of seawater desalination technologies and of the ways to reduce it.
    • Download: (1.275Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Carbon Footprint of Seawater Desalination Technologies: A Review

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303298
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorWang, Yongqing
    contributor authorMorosuk, Tatiana
    contributor authorCao, Wensheng
    date accessioned2024-12-24T19:06:39Z
    date available2024-12-24T19:06:39Z
    date copyright5/3/2024 12:00:00 AM
    date issued2024
    identifier issn0195-0738
    identifier otherjert_146_8_080801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303298
    description abstractAs an important and effective way of mitigating water shortages, desalination has steadily and rapidly increased its global capacity over the decades. This raises concern about its environmental impacts, especially its carbon footprint (CF). Although the CF of desalination has been extensively studied, the existing literature lacks reviews exclusively for it. To help fill the research gap, this study presents a comprehensive and up-to-date review of the CF of seawater desalination technologies, including the conventional reverse osmosis (RO), multi-stage flash (MSF), multi-effect distillation (MED), electrodialysis (ED), and mechanical vapor compression (MVC), and the emerging membrane distillation (MD) and humidification–dehumidification (HDH). To our knowledge, this is the first review that focuses on the CF of seawater desalination. A general procedure for assessing the CF of a desalination system is discussed. The CF data of 211 scenarios from 34 studies published from 2004 to 2023 are reviewed and analyzed, with special focuses on the CF of different technologies, the roles of different life-cycle phases and material/energy flows, and the mitigation measures. The results highlight the CF advantage of RO and low-carbon heat-driven MSF, MED, and MD, and emphasize the dominant role of the operational energy consumption (the amount, the form, and especially the source of the energy) in the CF of desalination. This review improves the understanding of the CF of seawater desalination technologies and of the ways to reduce it.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCarbon Footprint of Seawater Desalination Technologies: A Review
    typeJournal Paper
    journal volume146
    journal issue8
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4065251
    journal fristpage80801-1
    journal lastpage80801-17
    page17
    treeJournal of Energy Resources Technology:;2024:;volume( 146 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian