YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spray Autoignition Study of Bio-Oxygenated Additives Blended With Aviation Kerosene Under Engine-Like Cold-Start Conditions

    Source: Journal of Energy Resources Technology:;2024:;volume( 146 ):;issue: 012::page 122102-1
    Author:
    Zhang, Qiaosheng
    ,
    Han, Yongqiang
    ,
    Zhang, Kechao
    ,
    Tian, Jing
    DOI: 10.1115/1.4065760
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Bio-oxygenated fuels are expected to be used as a clean alternative energy source to improve the ignition behavior and pollutant emissions of RP-3 kerosene in compression ignition engines. In this study, the spray autoignition of PR-3 blended with different types of oxygenated fuels (including n-pentanol (PeOH), methyl propionate (MP), methyl ethyl ketone (MEK), 1,2-dimethoxyethane (1,2-DME), and 2-ethylhexyl nitrate (EHN)) was measured using a constant volume combustion chamber. Experiments were performed on three sets of blended fuels with different oxygen contents (2.5 wt%, 5 wt%, and 10 wt%) in the temperature range of 723–863 K and at ambient pressures of 2.2 and 4 MPa. A kinetic analysis utilized a merged RP-3 low-temperature kinetic model containing various oxygenated components. The ignition delay of blended fuels increases with the addition of PeOH, MP, and MEK, particularly PeOH, which demands more energy absorption at low temperatures due to its higher specific heat and latent heat of vaporization. As ambient pressure increased, the ignition delay period shortened for all blended fuels; however, PeOH and MEK demonstrated more significant low-temperature suppression. The combined kinetic model can reasonably predict the trend of the effect of oxygenated additives. 1,2-DME showed significantly more low-temperature reactivity versus PeOH, MP, and MEK. The variability is because the products of secondary O2 addition and isomerization of 1,2-DME undergo low-temperature branched chain reactions, but other oxygenated fuels produce more inert components.
    • Download: (2.323Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spray Autoignition Study of Bio-Oxygenated Additives Blended With Aviation Kerosene Under Engine-Like Cold-Start Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303267
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorZhang, Qiaosheng
    contributor authorHan, Yongqiang
    contributor authorZhang, Kechao
    contributor authorTian, Jing
    date accessioned2024-12-24T19:05:32Z
    date available2024-12-24T19:05:32Z
    date copyright8/20/2024 12:00:00 AM
    date issued2024
    identifier issn0195-0738
    identifier otherjert_146_12_122102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303267
    description abstractBio-oxygenated fuels are expected to be used as a clean alternative energy source to improve the ignition behavior and pollutant emissions of RP-3 kerosene in compression ignition engines. In this study, the spray autoignition of PR-3 blended with different types of oxygenated fuels (including n-pentanol (PeOH), methyl propionate (MP), methyl ethyl ketone (MEK), 1,2-dimethoxyethane (1,2-DME), and 2-ethylhexyl nitrate (EHN)) was measured using a constant volume combustion chamber. Experiments were performed on three sets of blended fuels with different oxygen contents (2.5 wt%, 5 wt%, and 10 wt%) in the temperature range of 723–863 K and at ambient pressures of 2.2 and 4 MPa. A kinetic analysis utilized a merged RP-3 low-temperature kinetic model containing various oxygenated components. The ignition delay of blended fuels increases with the addition of PeOH, MP, and MEK, particularly PeOH, which demands more energy absorption at low temperatures due to its higher specific heat and latent heat of vaporization. As ambient pressure increased, the ignition delay period shortened for all blended fuels; however, PeOH and MEK demonstrated more significant low-temperature suppression. The combined kinetic model can reasonably predict the trend of the effect of oxygenated additives. 1,2-DME showed significantly more low-temperature reactivity versus PeOH, MP, and MEK. The variability is because the products of secondary O2 addition and isomerization of 1,2-DME undergo low-temperature branched chain reactions, but other oxygenated fuels produce more inert components.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSpray Autoignition Study of Bio-Oxygenated Additives Blended With Aviation Kerosene Under Engine-Like Cold-Start Conditions
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4065760
    journal fristpage122102-1
    journal lastpage122102-14
    page14
    treeJournal of Energy Resources Technology:;2024:;volume( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian