YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Role of Microtubule Network in the Passive Anisotropic Viscoelasticity of Healthy Right Ventricle

    Source: Journal of Biomechanical Engineering:;2024:;volume( 146 ):;issue: 007::page 71003-1
    Author:
    LeBar, Kristen
    ,
    Liu, Wenqiang
    ,
    Chicco, Adam J.
    ,
    Wang, Zhijie
    DOI: 10.1115/1.4064685
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Cardiomyocytes are viscoelastic and key determinants of right ventricle (RV) mechanics. Intracellularly, microtubules are found to impact the viscoelasticity of isolated cardiomyocytes or trabeculae; whether they contribute to the tissue-level viscoelasticity is unknown. Our goal was to reveal the role of the microtubule network in the passive anisotropic viscoelasticity of the healthy RV. Equibiaxial stress relaxation tests were conducted in healthy RV free wall (RVFW) under early (6%) and end (15%) diastolic strain levels, and at sub- and physiological stretch rates. The viscoelasticity was assessed at baseline and after the removal of microtubule network. Furthermore, a quasi-linear viscoelastic (QLV) model was applied to delineate the contribution of microtubules to the relaxation behavior of RVFW. After removing the microtubule network, RVFW elasticity and viscosity were reduced at the early diastolic strain level and in both directions. The reduction in elasticity was stronger in the longitudinal direction, whereas the degree of changes in viscosity were equivalent between directions. There was insignificant change in RVFW viscoelasticity at late diastolic strain level. Finally, the modeling showed that the tissue's relaxation strength was reduced by the removal of the microtubule network, but the change was present only at a later time scale. These new findings suggest a critical role of cytoskeleton filaments in RVFW passive mechanics in physiological conditions.
    • Download: (1.301Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Role of Microtubule Network in the Passive Anisotropic Viscoelasticity of Healthy Right Ventricle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303261
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorLeBar, Kristen
    contributor authorLiu, Wenqiang
    contributor authorChicco, Adam J.
    contributor authorWang, Zhijie
    date accessioned2024-12-24T19:05:19Z
    date available2024-12-24T19:05:19Z
    date copyright3/19/2024 12:00:00 AM
    date issued2024
    identifier issn0148-0731
    identifier otherbio_146_07_071003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303261
    description abstractCardiomyocytes are viscoelastic and key determinants of right ventricle (RV) mechanics. Intracellularly, microtubules are found to impact the viscoelasticity of isolated cardiomyocytes or trabeculae; whether they contribute to the tissue-level viscoelasticity is unknown. Our goal was to reveal the role of the microtubule network in the passive anisotropic viscoelasticity of the healthy RV. Equibiaxial stress relaxation tests were conducted in healthy RV free wall (RVFW) under early (6%) and end (15%) diastolic strain levels, and at sub- and physiological stretch rates. The viscoelasticity was assessed at baseline and after the removal of microtubule network. Furthermore, a quasi-linear viscoelastic (QLV) model was applied to delineate the contribution of microtubules to the relaxation behavior of RVFW. After removing the microtubule network, RVFW elasticity and viscosity were reduced at the early diastolic strain level and in both directions. The reduction in elasticity was stronger in the longitudinal direction, whereas the degree of changes in viscosity were equivalent between directions. There was insignificant change in RVFW viscoelasticity at late diastolic strain level. Finally, the modeling showed that the tissue's relaxation strength was reduced by the removal of the microtubule network, but the change was present only at a later time scale. These new findings suggest a critical role of cytoskeleton filaments in RVFW passive mechanics in physiological conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRole of Microtubule Network in the Passive Anisotropic Viscoelasticity of Healthy Right Ventricle
    typeJournal Paper
    journal volume146
    journal issue7
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4064685
    journal fristpage71003-1
    journal lastpage71003-8
    page8
    treeJournal of Biomechanical Engineering:;2024:;volume( 146 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian