YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Privacy-Preserving Neural Networks for Smart Manufacturing

    Source: Journal of Computing and Information Science in Engineering:;2024:;volume( 024 ):;issue: 007::page 71002-1
    Author:
    Lee, Hankang
    ,
    Finke, Daniel
    ,
    Yang, Hui
    DOI: 10.1115/1.4063728
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The rapid advance in sensing technology has expedited data-driven innovation in manufacturing by enabling the collection of large amounts of data from factories. Big data provides an unprecedented opportunity for smart decision-making in the manufacturing process. However, big data also attracts cyberattacks and makes manufacturing systems vulnerable due to the inherent value of sensitive information. The increasing integration of artificial intelligence (AI) within smart factories also exposes manufacturing equipment susceptible to cyber threats, posing a critical risk to the integrity of smart manufacturing systems. Cyberattacks targeting manufacturing data can result in considerable financial losses and severe business disruption. Therefore, there is an urgent need to develop AI models that incorporate privacy-preserving methods to protect sensitive information implicit in the models against model inversion attacks. Hence, this paper presents the development of a new approach called mosaic neuron perturbation (MNP) to preserve latent information in the framework of the AI model, ensuring differential privacy requirements while mitigating the risk of model inversion attacks. MNP is flexible to implement into AI models, balancing the trade-off between model performance and robustness against cyberattacks while being highly scalable for large-scale computing. Experimental results, based on real-world manufacturing data collected from the computer numerical control (CNC) turning process, demonstrate that the proposed method significantly improves the ability to prevent inversion attacks while maintaining high prediction performance. The MNP method shows strong potential for making manufacturing systems both smart and secure by addressing the risk of data breaches while preserving the quality of AI models.
    • Download: (1.240Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Privacy-Preserving Neural Networks for Smart Manufacturing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303213
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorLee, Hankang
    contributor authorFinke, Daniel
    contributor authorYang, Hui
    date accessioned2024-12-24T19:03:24Z
    date available2024-12-24T19:03:24Z
    date copyright2/5/2024 12:00:00 AM
    date issued2024
    identifier issn1530-9827
    identifier otherjcise_24_7_071002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303213
    description abstractThe rapid advance in sensing technology has expedited data-driven innovation in manufacturing by enabling the collection of large amounts of data from factories. Big data provides an unprecedented opportunity for smart decision-making in the manufacturing process. However, big data also attracts cyberattacks and makes manufacturing systems vulnerable due to the inherent value of sensitive information. The increasing integration of artificial intelligence (AI) within smart factories also exposes manufacturing equipment susceptible to cyber threats, posing a critical risk to the integrity of smart manufacturing systems. Cyberattacks targeting manufacturing data can result in considerable financial losses and severe business disruption. Therefore, there is an urgent need to develop AI models that incorporate privacy-preserving methods to protect sensitive information implicit in the models against model inversion attacks. Hence, this paper presents the development of a new approach called mosaic neuron perturbation (MNP) to preserve latent information in the framework of the AI model, ensuring differential privacy requirements while mitigating the risk of model inversion attacks. MNP is flexible to implement into AI models, balancing the trade-off between model performance and robustness against cyberattacks while being highly scalable for large-scale computing. Experimental results, based on real-world manufacturing data collected from the computer numerical control (CNC) turning process, demonstrate that the proposed method significantly improves the ability to prevent inversion attacks while maintaining high prediction performance. The MNP method shows strong potential for making manufacturing systems both smart and secure by addressing the risk of data breaches while preserving the quality of AI models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePrivacy-Preserving Neural Networks for Smart Manufacturing
    typeJournal Paper
    journal volume24
    journal issue7
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4063728
    journal fristpage71002-1
    journal lastpage71002-14
    page14
    treeJournal of Computing and Information Science in Engineering:;2024:;volume( 024 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian