YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diffusion Generative Model-Based Learning for Smart Layer-Wise Monitoring of Additive Manufacturing

    Source: Journal of Computing and Information Science in Engineering:;2024:;volume( 024 ):;issue: 006::page 60903-1
    Author:
    Yangue, Emmanuel
    ,
    Fullington, Durant
    ,
    Smith, Owen
    ,
    Tian, Wenmeng
    ,
    Liu, Chenang
    DOI: 10.1115/1.4065092
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Despite the rapid adoption of deep learning models in additive manufacturing (AM), significant quality assurance challenges continue to persist. This is further emphasized by the limited availability of sample objects for monitoring AM-fabricated builds. Thus, this study advances an emerging diffusion generative model, i.e., the denoising diffusion implicit model (DDIM), for layer-wise image augmentation and monitoring in AM. The generative model can be used to generate potential layer-wise variations, which can be further studied to understand their causation and prevent their occurrence. The proposed models integrate two proposed kernel-based distance metrics into the DDIM framework for effective layer-wise AM image augmentation. These newly proposed metrics include a modified version of the kernel inception distance (m-KID) as well as an integration of m-KID and the inception score (IS) termed KID-IS. These novel integrations demonstrate great potential for maintaining both similarity and consistency in AM layer-wise image augmentation, while simultaneously exploring possible unobserved process variations. In the case study, six different cases based on both metal-based and polymer-based fused filament fabrication (FFF) are examined. The results indicate that both the proposed DDIM/m-KID and DDIM/KID-IS models outperform the four benchmark methods, including the popular denoising diffusion probabilistic models (DDPMs), and three other generative adversarial networks (GANs). Overall, DDIM/KID-IS emerges as the best-performing model with an average KID score of 0.840, m-KID score of 0.1185, peak signal-to-noise ratio (PSNR) of 18.150, and structural similarity index measure (SSIM) of 0.173, which demonstrated strong capabilities in generating potential AM process variations in terms of layer-wise images.
    • Download: (1.557Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diffusion Generative Model-Based Learning for Smart Layer-Wise Monitoring of Additive Manufacturing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303201
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorYangue, Emmanuel
    contributor authorFullington, Durant
    contributor authorSmith, Owen
    contributor authorTian, Wenmeng
    contributor authorLiu, Chenang
    date accessioned2024-12-24T19:03:01Z
    date available2024-12-24T19:03:01Z
    date copyright4/22/2024 12:00:00 AM
    date issued2024
    identifier issn1530-9827
    identifier otherjcise_24_6_060903.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303201
    description abstractDespite the rapid adoption of deep learning models in additive manufacturing (AM), significant quality assurance challenges continue to persist. This is further emphasized by the limited availability of sample objects for monitoring AM-fabricated builds. Thus, this study advances an emerging diffusion generative model, i.e., the denoising diffusion implicit model (DDIM), for layer-wise image augmentation and monitoring in AM. The generative model can be used to generate potential layer-wise variations, which can be further studied to understand their causation and prevent their occurrence. The proposed models integrate two proposed kernel-based distance metrics into the DDIM framework for effective layer-wise AM image augmentation. These newly proposed metrics include a modified version of the kernel inception distance (m-KID) as well as an integration of m-KID and the inception score (IS) termed KID-IS. These novel integrations demonstrate great potential for maintaining both similarity and consistency in AM layer-wise image augmentation, while simultaneously exploring possible unobserved process variations. In the case study, six different cases based on both metal-based and polymer-based fused filament fabrication (FFF) are examined. The results indicate that both the proposed DDIM/m-KID and DDIM/KID-IS models outperform the four benchmark methods, including the popular denoising diffusion probabilistic models (DDPMs), and three other generative adversarial networks (GANs). Overall, DDIM/KID-IS emerges as the best-performing model with an average KID score of 0.840, m-KID score of 0.1185, peak signal-to-noise ratio (PSNR) of 18.150, and structural similarity index measure (SSIM) of 0.173, which demonstrated strong capabilities in generating potential AM process variations in terms of layer-wise images.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDiffusion Generative Model-Based Learning for Smart Layer-Wise Monitoring of Additive Manufacturing
    typeJournal Paper
    journal volume24
    journal issue6
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4065092
    journal fristpage60903-1
    journal lastpage60903-15
    page15
    treeJournal of Computing and Information Science in Engineering:;2024:;volume( 024 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian