YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Journal of Heat and Mass Transfer
    • View Item
    •   YE&T Library
    • ASME
    • ASME Journal of Heat and Mass Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation of Thermal Performance of Minichannels With Transversely Patterned Nonslip and Superhydrophobic Surfaces in Turbulent Flow Conditions

    Source: ASME Journal of Heat and Mass Transfer:;2024:;volume( 146 ):;issue: 012::page 121801-1
    Author:
    Vankudre, Manish H.
    ,
    Alvarado, Jorge L.
    DOI: 10.1115/1.4065910
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The study aims at understanding the effects of transversely patterned nonslip and slip (superhydrophobic) surfaces on thermal performance and pressure drop in a circular minichannel under turbulent flow conditions. Numerical simulations of fluid flow through patterned minichannels for a Reynolds number of 5600 under constant heat flux conditions were performed using CFD software Star-CCM+. The κ–ω SST turbulence model with a coupled solver was used for simulating flow through the minichannels. Several numerical cases were simulated to understand the effects of nonslip to slip ratio and width of nonslip bands on pressure drop and thermal performance of circular minichannels. Two nonslip to slip ratios (1 and 1/3) and three different nonslip bandwidths (0.2δ, 0.4δ, 0.8δ) were considered in the simulation process. Parameters representative of the flow and heat transfer behavior such as boundary layer thickness, friction factor, slip velocity, shape factor, Nusselt number, and performance evaluation criterion (PEC) were calculated to better understand the effects of nonslip to slip ratio and width of nonslip bands on thermal performance. The simulation results reveal that a decrease in nonslip to slip ratio and increase in nonslip width lead to a reduction in pressure drop and an enhancement in heat transfer. Furthermore, the configuration with a nonslip to slip ratio of 1/3 and a nonslip width of 0.8δ was found to be the optimal minichannel design, achieving a 40% reduction in pressure drop with a PEC value of 3.4. In summary, the numerical simulations show that properly designed microchannels consisting of slip and nonslip bands arranged transversely to the flow direction can lead to enhanced thermal performance under turbulent flow conditions.
    • Download: (2.605Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation of Thermal Performance of Minichannels With Transversely Patterned Nonslip and Superhydrophobic Surfaces in Turbulent Flow Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303108
    Collections
    • ASME Journal of Heat and Mass Transfer

    Show full item record

    contributor authorVankudre, Manish H.
    contributor authorAlvarado, Jorge L.
    date accessioned2024-12-24T18:59:43Z
    date available2024-12-24T18:59:43Z
    date copyright9/6/2024 12:00:00 AM
    date issued2024
    identifier issn2832-8450
    identifier otherht_146_12_121801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303108
    description abstractThe study aims at understanding the effects of transversely patterned nonslip and slip (superhydrophobic) surfaces on thermal performance and pressure drop in a circular minichannel under turbulent flow conditions. Numerical simulations of fluid flow through patterned minichannels for a Reynolds number of 5600 under constant heat flux conditions were performed using CFD software Star-CCM+. The κ–ω SST turbulence model with a coupled solver was used for simulating flow through the minichannels. Several numerical cases were simulated to understand the effects of nonslip to slip ratio and width of nonslip bands on pressure drop and thermal performance of circular minichannels. Two nonslip to slip ratios (1 and 1/3) and three different nonslip bandwidths (0.2δ, 0.4δ, 0.8δ) were considered in the simulation process. Parameters representative of the flow and heat transfer behavior such as boundary layer thickness, friction factor, slip velocity, shape factor, Nusselt number, and performance evaluation criterion (PEC) were calculated to better understand the effects of nonslip to slip ratio and width of nonslip bands on thermal performance. The simulation results reveal that a decrease in nonslip to slip ratio and increase in nonslip width lead to a reduction in pressure drop and an enhancement in heat transfer. Furthermore, the configuration with a nonslip to slip ratio of 1/3 and a nonslip width of 0.8δ was found to be the optimal minichannel design, achieving a 40% reduction in pressure drop with a PEC value of 3.4. In summary, the numerical simulations show that properly designed microchannels consisting of slip and nonslip bands arranged transversely to the flow direction can lead to enhanced thermal performance under turbulent flow conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation of Thermal Performance of Minichannels With Transversely Patterned Nonslip and Superhydrophobic Surfaces in Turbulent Flow Conditions
    typeJournal Paper
    journal volume146
    journal issue12
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4065910
    journal fristpage121801-1
    journal lastpage121801-9
    page9
    treeASME Journal of Heat and Mass Transfer:;2024:;volume( 146 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian