YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Journal of Heat and Mass Transfer
    • View Item
    •   YE&T Library
    • ASME
    • ASME Journal of Heat and Mass Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Genetic Algorithm as the Solution of Non-Linear Inverse Heat Conduction Problems: A Novel Sequential Approach

    Source: ASME Journal of Heat and Mass Transfer:;2024:;volume( 146 ):;issue: 009::page 91404-1
    Author:
    Allard, Dominic
    ,
    Najafi, Hamidreza
    DOI: 10.1115/1.4065452
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Direct measurement of surface heat flux could be extremely challenging, if not impossible, in numerous applications. In such cases, the use of temperature measurement data from subsurface locations can facilitate the determination of surface heat flux and temperature through the solution of the inverse heat conduction problem (IHCP). Several different techniques have been developed over the years for solving IHCPs, with different levels of complexity and accuracy. The filter coefficient technique has proved to be a promising approach for solving IHCPs. Inspired by the filter coefficient approach, a novel method is presented in this paper for solving one-dimensional IHCPs in a domain with temperature-dependent material properties. A test case is developed in COMSOL Multiphysics where the front side of a slab is subject to known transient heat flux and the temperature distributions within the domain are calculated through numerical simulation. The IHCP solution in the form of filter coefficients is defined and a genetic algorithm (GA) is used for the calculation of filter matrix. The number of significant filter coefficients required to evaluate surface heat flux at each time-step is determined through trial and error and the optimal number is selected for evaluating the solution. The structure of the filter matrix is assessed and discussed. The resulting filter coefficients are then used to evaluate the surface heat flux for several different test cases and the performance of the proposed approach is assessed in detail. The results showed that the presented approach is robust and can result in finding optimal filter coefficients that can accurately estimate various types of surface heat flux profiles using temperature data from a limited number of time steps and in a near real-time fashion.
    • Download: (2.902Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Genetic Algorithm as the Solution of Non-Linear Inverse Heat Conduction Problems: A Novel Sequential Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4303080
    Collections
    • ASME Journal of Heat and Mass Transfer

    Show full item record

    contributor authorAllard, Dominic
    contributor authorNajafi, Hamidreza
    date accessioned2024-12-24T18:58:43Z
    date available2024-12-24T18:58:43Z
    date copyright6/6/2024 12:00:00 AM
    date issued2024
    identifier issn2832-8450
    identifier otherht_146_09_091404.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303080
    description abstractDirect measurement of surface heat flux could be extremely challenging, if not impossible, in numerous applications. In such cases, the use of temperature measurement data from subsurface locations can facilitate the determination of surface heat flux and temperature through the solution of the inverse heat conduction problem (IHCP). Several different techniques have been developed over the years for solving IHCPs, with different levels of complexity and accuracy. The filter coefficient technique has proved to be a promising approach for solving IHCPs. Inspired by the filter coefficient approach, a novel method is presented in this paper for solving one-dimensional IHCPs in a domain with temperature-dependent material properties. A test case is developed in COMSOL Multiphysics where the front side of a slab is subject to known transient heat flux and the temperature distributions within the domain are calculated through numerical simulation. The IHCP solution in the form of filter coefficients is defined and a genetic algorithm (GA) is used for the calculation of filter matrix. The number of significant filter coefficients required to evaluate surface heat flux at each time-step is determined through trial and error and the optimal number is selected for evaluating the solution. The structure of the filter matrix is assessed and discussed. The resulting filter coefficients are then used to evaluate the surface heat flux for several different test cases and the performance of the proposed approach is assessed in detail. The results showed that the presented approach is robust and can result in finding optimal filter coefficients that can accurately estimate various types of surface heat flux profiles using temperature data from a limited number of time steps and in a near real-time fashion.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGenetic Algorithm as the Solution of Non-Linear Inverse Heat Conduction Problems: A Novel Sequential Approach
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleASME Journal of Heat and Mass Transfer
    identifier doi10.1115/1.4065452
    journal fristpage91404-1
    journal lastpage91404-10
    page10
    treeASME Journal of Heat and Mass Transfer:;2024:;volume( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian