Show simple item record

contributor authorGhelani, Raj
contributor authorRoumeliotis, Ioannis
contributor authorSaias, Chana Anna
contributor authorMourouzidis, Christos
contributor authorPachidis, Vassilios
contributor authorNorman, Justin
contributor authorBacic, Marko
date accessioned2024-12-24T18:53:54Z
date available2024-12-24T18:53:54Z
date copyright4/22/2024 12:00:00 AM
date issued2024
identifier issn0742-4795
identifier othergtp_146_10_101007.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302945
description abstractA novel integrated gas turbine cycle design and power management optimization methodology for parallel hybrid electric propulsion architectures is presented in this paper. The gas turbine multipoint cycle design method is extended to turboprop and turbofan architectures, and several trade studies are performed initially at the cycle level. It is shown that the maximum degree of electrification is limited by the surge margin levels of the booster in the turbofan configuration. An aircraft mission-level assessment is then performed using the integrated optimization method initially for an A320 Neo style aircraft case. The results indicate that the optimal cycle redesigned hybrid electric propulsion system (HEPS) favors takeoff and climb power on-takes while optimal retrofit HEPS favor cruise power on-takes. It is shown that for current battery energy density (250 Wh/Kg), there is no fuel burn benefit. Furthermore, even for optimistic energy density values (750 Wh/kg) the maximum fuel burn benefit for a 500 nm mission is 5.5% and 4% for redesigned and retrofit HEPS, respectively. The power management strategies for HEPS configurations also differ based on gas turbine technology with improvement in gas turbine technology showing greater scope for electrification. The method is then extended to ATR 72 style aircraft case, showing greater fuel burn benefits across the flight mission envelope. The power management strategies also change depending on the objective function, and optimum strategies are reported for direct operating cost or fuel burn. The retrofit case studies show a benefit in direct operating cost compared to redesigned case studies for ATR 72. Finally, a novel multimission approach is shown to highlight the overall fuel burn and direct operating cost benefit across the aircraft mission cluster.
publisherThe American Society of Mechanical Engineers (ASME)
titleIntegrated Hybrid Engine Cycle Design and Power Management Optimization
typeJournal Paper
journal volume146
journal issue10
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4065020
journal fristpage101007-1
journal lastpage101007-10
page10
treeJournal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record