| contributor author | Castellani, S. | |
| contributor author | Nassini, P. C. | |
| contributor author | Andreini, A. | |
| contributor author | Meloni, R. | |
| contributor author | Pucci, E. | |
| contributor author | Valera-Medina, A. | |
| contributor author | Morris, S. | |
| contributor author | Goktepe, B. | |
| contributor author | Mashruk, S. | |
| date accessioned | 2024-12-24T18:52:20Z | |
| date available | 2024-12-24T18:52:20Z | |
| date copyright | 1/4/2024 12:00:00 AM | |
| date issued | 2024 | |
| identifier issn | 0742-4795 | |
| identifier other | gtp_146_06_061019.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4302900 | |
| description abstract | The lean premixed technology is a very convenient combustion strategy to progressively move from natural gas to high hydrogen content fuels in gas turbines limiting the pollutants emissions at the same time. The enabling process that will allow the combustor to manage a full H2 operation requires relevant design modifications, and in this framework, the numerical modeling will be a pivotal tool that will support this transition. In this work, high-fidelity simulations of perfectly premixed swirl stabilized flames have been performed varying the H2 content in the fuel from 0 to 100% to investigate the effect of the hydrogen addition on the methane flame. The artificially thickened flame model (ATFM) has been used to treat the turbulent chemistry interaction. The numerical results have been compared with the detailed experimental data performed at Cardiff University's Gas Turbine Research Center. After the numerical model validation against experimental OH* chemiluminescence maps has been presented, a deep numerical investigation of the effect of the H2 addition on the flame has been performed. In this way, the work aims to highlight the good prediction capability of the ATFM, and, at the same time, highlight the change in the different contributions that govern the flame reactivity moving from 100% CH4 to 100% H2 in very lean conditions. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Numerical Modeling of Swirl Stabilized Lean-Premixed H2–CH4 Flames With the Artificially Thickened Flame Model | |
| type | Journal Paper | |
| journal volume | 146 | |
| journal issue | 6 | |
| journal title | Journal of Engineering for Gas Turbines and Power | |
| identifier doi | 10.1115/1.4063829 | |
| journal fristpage | 61019-1 | |
| journal lastpage | 61019-13 | |
| page | 13 | |
| tree | Journal of Engineering for Gas Turbines and Power:;2024:;volume( 146 ):;issue: 006 | |
| contenttype | Fulltext | |