YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASME Open Journal of Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of a Ranque–Hilsch Vortex Flow in an Internal Cooling of a Gas Turbine Engine Blade

    Source: ASME Open Journal of Engineering:;2024:;volume( 003 ):;issue: 00::page 31006-1
    Author:
    Galeana, Daisy
    ,
    Abebe, Ashenafi
    ,
    Beyene, Asfaw
    DOI: 10.1115/1.4065106
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The efficiency of a gas turbine engine is directly impacted by the turbine inlet temperature and the corresponding pressure ratio. A major strategy, aside from the use of costly high-temperature blade materials, is increasing the turbine inlet temperature by internally cooling the blades using pressurized air from the engine compressor. Understanding the fluid mechanics and heat transfer of internal blade cooling is, therefore, of paramount importance for increasing the temperature threshold, hence increasing engine efficiency. This article presents modeling and test results of a novel cooling approach, one in which the Ranque–Hilsch vortex flow is adopted for the first-row gas turbine blade cooling. Simulation and test results demonstrate the successful formation of continuous Ranque–Hilsch vortex flow by injecting compressed air into a cylindrical chamber equipped with seven air inlets. At an inlet pressure of 100 kPa, the outlet temperature from the vortex tube dropped 255 °C, which allowed the blade temperature to cool by 47 °C. When a total inlet pressure of 300 kPa was admitted, the drop-in temperature reached 65 °C. The device has the potential to drop the cooling air temperature below the freezing point with increased inlet pressure. The thermal efficiency of the gas turbine blade increased by about 3% when vortex cooling with 10% mass of partially compressed air was extracted at about 910 kPa. For the tested scenario of a 17 MW power output, the partial extraction had a better efficiency increment than extraction at full compression, which was 1200 kPa.
    • Download: (1.492Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of a Ranque–Hilsch Vortex Flow in an Internal Cooling of a Gas Turbine Engine Blade

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302794
    Collections
    • ASME Open Journal of Engineering

    Show full item record

    contributor authorGaleana, Daisy
    contributor authorAbebe, Ashenafi
    contributor authorBeyene, Asfaw
    date accessioned2024-12-24T18:48:51Z
    date available2024-12-24T18:48:51Z
    date copyright4/9/2024 12:00:00 AM
    date issued2024
    identifier issn2770-3495
    identifier otheraoje_3_031006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302794
    description abstractThe efficiency of a gas turbine engine is directly impacted by the turbine inlet temperature and the corresponding pressure ratio. A major strategy, aside from the use of costly high-temperature blade materials, is increasing the turbine inlet temperature by internally cooling the blades using pressurized air from the engine compressor. Understanding the fluid mechanics and heat transfer of internal blade cooling is, therefore, of paramount importance for increasing the temperature threshold, hence increasing engine efficiency. This article presents modeling and test results of a novel cooling approach, one in which the Ranque–Hilsch vortex flow is adopted for the first-row gas turbine blade cooling. Simulation and test results demonstrate the successful formation of continuous Ranque–Hilsch vortex flow by injecting compressed air into a cylindrical chamber equipped with seven air inlets. At an inlet pressure of 100 kPa, the outlet temperature from the vortex tube dropped 255 °C, which allowed the blade temperature to cool by 47 °C. When a total inlet pressure of 300 kPa was admitted, the drop-in temperature reached 65 °C. The device has the potential to drop the cooling air temperature below the freezing point with increased inlet pressure. The thermal efficiency of the gas turbine blade increased by about 3% when vortex cooling with 10% mass of partially compressed air was extracted at about 910 kPa. For the tested scenario of a 17 MW power output, the partial extraction had a better efficiency increment than extraction at full compression, which was 1200 kPa.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleApplication of a Ranque–Hilsch Vortex Flow in an Internal Cooling of a Gas Turbine Engine Blade
    typeJournal Paper
    journal volume3
    journal titleASME Open Journal of Engineering
    identifier doi10.1115/1.4065106
    journal fristpage31006-1
    journal lastpage31006-13
    page13
    treeASME Open Journal of Engineering:;2024:;volume( 003 ):;issue: 00
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian