YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Geometric Derivation of the Governing Equations of Motion of Nonholonomic Dynamic Systems

    Source: Journal of Computational and Nonlinear Dynamics:;2024:;volume( 019 ):;issue: 011::page 111002-1
    Author:
    Liu, Xiaobo
    DOI: 10.1115/1.4066073
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we present a Riemannian geometric derivation of the governing equations of motion of nonholonomic dynamic systems. A geometric form of the work-energy principle is first derived. The geometric form can be realized in appropriate generalized quantities, and the independent equations of motion can be obtained if the subspace of generalized speeds allowable by nonholonomic constraints can be determined. We provide a geometric perspective of the governing equations of motion and demonstrate its effectiveness in studying dynamic systems subjected to nonholonomic constraints.
    • Download: (363.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Geometric Derivation of the Governing Equations of Motion of Nonholonomic Dynamic Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302774
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorLiu, Xiaobo
    date accessioned2024-12-24T18:48:18Z
    date available2024-12-24T18:48:18Z
    date copyright8/22/2024 12:00:00 AM
    date issued2024
    identifier issn1555-1415
    identifier othercnd_019_11_111002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302774
    description abstractIn this paper, we present a Riemannian geometric derivation of the governing equations of motion of nonholonomic dynamic systems. A geometric form of the work-energy principle is first derived. The geometric form can be realized in appropriate generalized quantities, and the independent equations of motion can be obtained if the subspace of generalized speeds allowable by nonholonomic constraints can be determined. We provide a geometric perspective of the governing equations of motion and demonstrate its effectiveness in studying dynamic systems subjected to nonholonomic constraints.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Geometric Derivation of the Governing Equations of Motion of Nonholonomic Dynamic Systems
    typeJournal Paper
    journal volume19
    journal issue11
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4066073
    journal fristpage111002-1
    journal lastpage111002-9
    page9
    treeJournal of Computational and Nonlinear Dynamics:;2024:;volume( 019 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian