YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Analysis of Additively Manufactured Latticework Coupons

    Source: Journal of Turbomachinery:;2024:;volume( 146 ):;issue: 006::page 61001-1
    Author:
    Castelli, Niccolò
    ,
    Sandri, Umberto
    ,
    Picchi, Alessio
    ,
    Facchini, Bruno
    ,
    Morante, Francesco
    ,
    Cubeda, Simone
    DOI: 10.1115/1.4064320
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The capabilities and the precision of additive manufacturing processes have been tremendously increased in the last years, and this trend is not expected to be close to an end. Researchers, in the gas turbine industry, are focusing on the technology implementation on cooling systems. The aim of the present work is to investigate the performances of eight different geometries in order to exploit the cooling potential of some challenging latticework schemes with respect to traditional ones such as smooth channel, dimples, and pin fins. Test coupons consisting of those cooling structures embedded inside a rectangular cooling channel with dimensions of 56 mm width, 5 mm height, and 68 mm length were fabricated by means of direct metal laser melting technique. Since an aim of the present work is to evaluate the shape deformation associated with this additive process, the results of the CT scan imaging technique are presented. The performances are characterized both in terms of averaged heat transfer and friction factor values inside the test coupons by means of steady-state technique with a constant wall temperature boundary condition. The investigated flow Reynolds numbers range from 18, 000 to 40, 000. These values allow the authors to provide a deeper understanding of the latticework structures performances at Reynolds numbers beyond the range typically investigated in the literature. An efficiency index is employed to compare the performances of each geometry. Although the obtained results reveal that none of the tested geometries outperforms the other ones, the latticework arrangements show a heat transfer enhancement with respect to a porosity decrease. In addition, the good capability in terms of heat transfer of the lattice structures measured in the present work suggests the use of such technologies for twofold optimization process based on mechanical resistance and heat transfer characteristics.
    • Download: (1.346Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Analysis of Additively Manufactured Latticework Coupons

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302680
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorCastelli, Niccolò
    contributor authorSandri, Umberto
    contributor authorPicchi, Alessio
    contributor authorFacchini, Bruno
    contributor authorMorante, Francesco
    contributor authorCubeda, Simone
    date accessioned2024-12-24T18:45:13Z
    date available2024-12-24T18:45:13Z
    date copyright1/16/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_146_6_061001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302680
    description abstractThe capabilities and the precision of additive manufacturing processes have been tremendously increased in the last years, and this trend is not expected to be close to an end. Researchers, in the gas turbine industry, are focusing on the technology implementation on cooling systems. The aim of the present work is to investigate the performances of eight different geometries in order to exploit the cooling potential of some challenging latticework schemes with respect to traditional ones such as smooth channel, dimples, and pin fins. Test coupons consisting of those cooling structures embedded inside a rectangular cooling channel with dimensions of 56 mm width, 5 mm height, and 68 mm length were fabricated by means of direct metal laser melting technique. Since an aim of the present work is to evaluate the shape deformation associated with this additive process, the results of the CT scan imaging technique are presented. The performances are characterized both in terms of averaged heat transfer and friction factor values inside the test coupons by means of steady-state technique with a constant wall temperature boundary condition. The investigated flow Reynolds numbers range from 18, 000 to 40, 000. These values allow the authors to provide a deeper understanding of the latticework structures performances at Reynolds numbers beyond the range typically investigated in the literature. An efficiency index is employed to compare the performances of each geometry. Although the obtained results reveal that none of the tested geometries outperforms the other ones, the latticework arrangements show a heat transfer enhancement with respect to a porosity decrease. In addition, the good capability in terms of heat transfer of the lattice structures measured in the present work suggests the use of such technologies for twofold optimization process based on mechanical resistance and heat transfer characteristics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Analysis of Additively Manufactured Latticework Coupons
    typeJournal Paper
    journal volume146
    journal issue6
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4064320
    journal fristpage61001-1
    journal lastpage61001-13
    page13
    treeJournal of Turbomachinery:;2024:;volume( 146 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian