YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Roughness Related to Cooling Performance of Channels Made Through Additive Manufacturing

    Source: Journal of Turbomachinery:;2024:;volume( 146 ):;issue: 005::page 51008-1
    Author:
    Wildgoose, Alexander J.
    ,
    Thole, Karen A.
    ,
    Tuneskog, Erika
    ,
    Wang, Lieke
    DOI: 10.1115/1.4064310
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The complex surface morphology and multiscale surface features inherent in additively manufactured (AM) components contribute to the overall flow characteristics and heat transfer of cooling passages. As the AM process and cooling data in the literature continue to evolve, so does the need for more accurate heat transfer and pressure loss correlations for AM cooling schemes. This study improves the predictability of pressure loss and heat transfer for AM cooling passages by fabricating a range of coupons and investigating samples in the literature. Twenty-seven test coupons were manufactured using direct metal laser sintering in an assortment of build directions and build locations that produced a variety of surface morphologies. Nondestructive evaluation, computed tomography scanning, was used to quantify the surface morphology as well as capture the as-built geometric dimensions of the cooling schemes. The friction factor and bulk Nusselt number of the coupons were measured using an experimental rig. Pressure loss and heat transfer correlations in the literature were compared with the experimental results from the current coupons and datasets from the literature. Arithmetic mean roughness correlations in the literature struggled to predict the cooling performance of AM channels since the bulk roughness statistic did not capture the overall form of the surface morphology. A combination of root mean square roughness and skewness of the roughness was able to best predict pressure loss and heat transfer for the present samples and those in the literature while being independent of build location, build direction, material, machine, and laser parameters. The maximum absolute error was 25% and the average absolute error was 12% for the friction factor correlation. The maximum absolute error was 39% and the average absolute error was 8% for the Nusselt Number correlation.
    • Download: (1.401Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Roughness Related to Cooling Performance of Channels Made Through Additive Manufacturing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302677
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorWildgoose, Alexander J.
    contributor authorThole, Karen A.
    contributor authorTuneskog, Erika
    contributor authorWang, Lieke
    date accessioned2024-12-24T18:45:06Z
    date available2024-12-24T18:45:06Z
    date copyright1/16/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_146_5_051008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302677
    description abstractThe complex surface morphology and multiscale surface features inherent in additively manufactured (AM) components contribute to the overall flow characteristics and heat transfer of cooling passages. As the AM process and cooling data in the literature continue to evolve, so does the need for more accurate heat transfer and pressure loss correlations for AM cooling schemes. This study improves the predictability of pressure loss and heat transfer for AM cooling passages by fabricating a range of coupons and investigating samples in the literature. Twenty-seven test coupons were manufactured using direct metal laser sintering in an assortment of build directions and build locations that produced a variety of surface morphologies. Nondestructive evaluation, computed tomography scanning, was used to quantify the surface morphology as well as capture the as-built geometric dimensions of the cooling schemes. The friction factor and bulk Nusselt number of the coupons were measured using an experimental rig. Pressure loss and heat transfer correlations in the literature were compared with the experimental results from the current coupons and datasets from the literature. Arithmetic mean roughness correlations in the literature struggled to predict the cooling performance of AM channels since the bulk roughness statistic did not capture the overall form of the surface morphology. A combination of root mean square roughness and skewness of the roughness was able to best predict pressure loss and heat transfer for the present samples and those in the literature while being independent of build location, build direction, material, machine, and laser parameters. The maximum absolute error was 25% and the average absolute error was 12% for the friction factor correlation. The maximum absolute error was 39% and the average absolute error was 8% for the Nusselt Number correlation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRoughness Related to Cooling Performance of Channels Made Through Additive Manufacturing
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4064310
    journal fristpage51008-1
    journal lastpage51008-12
    page12
    treeJournal of Turbomachinery:;2024:;volume( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian