YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Loss Analysis in Radial Inflow Turbines for Supercritical CO2 Mixtures

    Source: Journal of Turbomachinery:;2024:;volume( 146 ):;issue: 005::page 51003-1
    Author:
    Aqel, Omar
    ,
    White, Martin
    ,
    Sayma, Abdulnaser
    DOI: 10.1115/1.4064193
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Recent studies suggest that CO2 mixtures can reduce the costs of concentrated solar power plants. Radial inflow turbines (RIT) are considered suitable for small to medium-sized CO2 power plants (100 kW to 10 MW) due to aerodynamic and cost factors. This paper quantifies the impact of CO2 doping on RIT design by comparing 1D mean-line designs and aerodynamic losses of pure CO2 RITs with three CO2 mixtures: titanium tetrachloride (TiCl4), sulfur dioxide (SO2), and hexafluorobenzene (C6F6). Results show that turbine designs share similar rotor shapes and velocity diagrams for all working fluids. However, factors like clearance-to-blade height ratio, turbine pressure ratio, and fluid viscosity cause differences in turbine efficiency. When normalized for these factors, differences in total-to-static efficiency become less than 0.1%. However, imposing rotational speed limits reveals greater differences in turbine designs and efficiencies. The imposition of rotational speed limits reduces total-to-static efficiency across all fluids, with a maximum 15% reduction in 0.1 MW CO2 compared to a 3% reduction in CO2/TiCl4 turbines of the same power. Among the studied mixtures, CO2/TiCl4 turbines achieve the highest efficiency, followed by CO2/C6F6 and CO2/SO2. For example, 100 kW turbines achieve total-to-static efficiencies of 80.0%, 77.4%, 78.1%, and 75.5% for CO2/TiCl4, CO2/C6F6, CO2/SO2, and pure CO2, respectively. In 10 MW turbines, efficiencies are 87.8%, 87.3%, 87.5%, and 87.2% in the same order.
    • Download: (1.100Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Loss Analysis in Radial Inflow Turbines for Supercritical CO2 Mixtures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302676
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorAqel, Omar
    contributor authorWhite, Martin
    contributor authorSayma, Abdulnaser
    date accessioned2024-12-24T18:45:04Z
    date available2024-12-24T18:45:04Z
    date copyright1/16/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_146_5_051003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302676
    description abstractRecent studies suggest that CO2 mixtures can reduce the costs of concentrated solar power plants. Radial inflow turbines (RIT) are considered suitable for small to medium-sized CO2 power plants (100 kW to 10 MW) due to aerodynamic and cost factors. This paper quantifies the impact of CO2 doping on RIT design by comparing 1D mean-line designs and aerodynamic losses of pure CO2 RITs with three CO2 mixtures: titanium tetrachloride (TiCl4), sulfur dioxide (SO2), and hexafluorobenzene (C6F6). Results show that turbine designs share similar rotor shapes and velocity diagrams for all working fluids. However, factors like clearance-to-blade height ratio, turbine pressure ratio, and fluid viscosity cause differences in turbine efficiency. When normalized for these factors, differences in total-to-static efficiency become less than 0.1%. However, imposing rotational speed limits reveals greater differences in turbine designs and efficiencies. The imposition of rotational speed limits reduces total-to-static efficiency across all fluids, with a maximum 15% reduction in 0.1 MW CO2 compared to a 3% reduction in CO2/TiCl4 turbines of the same power. Among the studied mixtures, CO2/TiCl4 turbines achieve the highest efficiency, followed by CO2/C6F6 and CO2/SO2. For example, 100 kW turbines achieve total-to-static efficiencies of 80.0%, 77.4%, 78.1%, and 75.5% for CO2/TiCl4, CO2/C6F6, CO2/SO2, and pure CO2, respectively. In 10 MW turbines, efficiencies are 87.8%, 87.3%, 87.5%, and 87.2% in the same order.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLoss Analysis in Radial Inflow Turbines for Supercritical CO2 Mixtures
    typeJournal Paper
    journal volume146
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4064193
    journal fristpage51003-1
    journal lastpage51003-12
    page12
    treeJournal of Turbomachinery:;2024:;volume( 146 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian