YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Data-Centric Approach to Loss Mechanisms

    Source: Journal of Turbomachinery:;2023:;volume( 146 ):;issue: 004::page 41007-1
    Author:
    Senior, Alistair C.
    ,
    Miller, Robert J.
    DOI: 10.1115/1.4064167
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Breaking down the total loss in a turbomachine into a number of low-order, physical models is a powerful way of developing loss models for informing design decisions. Better loss models lead to better design decisions. A problem, however, is that in complex flows, it is often not clear how to break a flow down physically without making assumptions. An additional problem is that the designer often does not know what assumptions should be made to derive the most accurate and general physical models. In practice, this problem often leads to loss models of low accuracy, which only work in a limited part of the overall design space. This paper shows that machine learning can be used to augment a designer in the process of developing loss models for complex flows. It is shown that it is able to help a designer discover new, more accurate and general, physical models, highlighting to a designer what assumptions should be made to retain the physics important to the problem. The paper illustrates the new method using the problem of compressor and turbine profile loss. This problem was chosen because it is well understood and therefore is a good way of validating the new method. However, surprisingly the new method is shown to be able to develop a new profile loss model which is more accurate and general than previous models. This is shown to have been achieved by the machine learning finding a new, more general, underlying model for trailing edge mixing loss.
    • Download: (1.298Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Data-Centric Approach to Loss Mechanisms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302672
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSenior, Alistair C.
    contributor authorMiller, Robert J.
    date accessioned2024-12-24T18:44:52Z
    date available2024-12-24T18:44:52Z
    date copyright12/15/2023 12:00:00 AM
    date issued2023
    identifier issn0889-504X
    identifier otherturbo_146_4_041007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302672
    description abstractBreaking down the total loss in a turbomachine into a number of low-order, physical models is a powerful way of developing loss models for informing design decisions. Better loss models lead to better design decisions. A problem, however, is that in complex flows, it is often not clear how to break a flow down physically without making assumptions. An additional problem is that the designer often does not know what assumptions should be made to derive the most accurate and general physical models. In practice, this problem often leads to loss models of low accuracy, which only work in a limited part of the overall design space. This paper shows that machine learning can be used to augment a designer in the process of developing loss models for complex flows. It is shown that it is able to help a designer discover new, more accurate and general, physical models, highlighting to a designer what assumptions should be made to retain the physics important to the problem. The paper illustrates the new method using the problem of compressor and turbine profile loss. This problem was chosen because it is well understood and therefore is a good way of validating the new method. However, surprisingly the new method is shown to be able to develop a new profile loss model which is more accurate and general than previous models. This is shown to have been achieved by the machine learning finding a new, more general, underlying model for trailing edge mixing loss.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Data-Centric Approach to Loss Mechanisms
    typeJournal Paper
    journal volume146
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4064167
    journal fristpage41007-1
    journal lastpage41007-15
    page15
    treeJournal of Turbomachinery:;2023:;volume( 146 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian