YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme—Part I: Sliding Interfaces and Unsteady Row Interactions

    Source: Journal of Turbomachinery:;2023:;volume( 146 ):;issue: 002::page 21005-1
    Author:
    Bergmann, Michael
    ,
    Morsbach, Christian
    ,
    Klose, Bjoern F.
    ,
    Ashcroft, Graham
    ,
    Kügeler, Edmund
    DOI: 10.1115/1.4063734
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this first paper of a three-part series, we present the extension and validation of the high-order discontinuous Galerkin scheme in DLR’s CFD-solver trace for scale-resolving simulations of unsteady row interactions. The translational movement of rows in linear cascade experiments is represented in the numerical model by solving the equations in the relative frame of reference. To couple rows in different frames of reference, a sliding interface approach based on the mortar technique for non-conforming meshes has been developed. The verification of the approach is exemplified by three canonical test cases. First, the experimental order of convergence is verified for the isentropic vortex convection. Subsequently, the suitability of the sliding interface approach for scale-resolving simulations is tested on the Taylor–Green vortex flow and a turbulent cylinder flow. Finally, the LES solver is applied to the T106D cascade with upstream moving bars at an exit Reynolds number of 200,000 and exit Mach number of 0.4. The flow physics with and without bars is discussed in terms of the instantaneous flow field, and time- and phase-averaged quantities. The comparison with experimental data shows overall a good agreement, especially for the total pressure losses in the wake, but also reveals uncertainties related to the reproduction of an experiment in the numerical model.
    • Download: (1.506Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme—Part I: Sliding Interfaces and Unsteady Row Interactions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302664
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorBergmann, Michael
    contributor authorMorsbach, Christian
    contributor authorKlose, Bjoern F.
    contributor authorAshcroft, Graham
    contributor authorKügeler, Edmund
    date accessioned2024-12-24T18:44:34Z
    date available2024-12-24T18:44:34Z
    date copyright11/13/2023 12:00:00 AM
    date issued2023
    identifier issn0889-504X
    identifier otherturbo_146_2_021005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302664
    description abstractIn this first paper of a three-part series, we present the extension and validation of the high-order discontinuous Galerkin scheme in DLR’s CFD-solver trace for scale-resolving simulations of unsteady row interactions. The translational movement of rows in linear cascade experiments is represented in the numerical model by solving the equations in the relative frame of reference. To couple rows in different frames of reference, a sliding interface approach based on the mortar technique for non-conforming meshes has been developed. The verification of the approach is exemplified by three canonical test cases. First, the experimental order of convergence is verified for the isentropic vortex convection. Subsequently, the suitability of the sliding interface approach for scale-resolving simulations is tested on the Taylor–Green vortex flow and a turbulent cylinder flow. Finally, the LES solver is applied to the T106D cascade with upstream moving bars at an exit Reynolds number of 200,000 and exit Mach number of 0.4. The flow physics with and without bars is discussed in terms of the instantaneous flow field, and time- and phase-averaged quantities. The comparison with experimental data shows overall a good agreement, especially for the total pressure losses in the wake, but also reveals uncertainties related to the reproduction of an experiment in the numerical model.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme—Part I: Sliding Interfaces and Unsteady Row Interactions
    typeJournal Paper
    journal volume146
    journal issue2
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4063734
    journal fristpage21005-1
    journal lastpage21005-12
    page12
    treeJournal of Turbomachinery:;2023:;volume( 146 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian