YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Attenuation of Inlet Distortion Effects on Fans Using Asymmetric Inlet Guide Vanes

    Source: Journal of Turbomachinery:;2024:;volume( 146 ):;issue: 010::page 101006-1
    Author:
    Liu, Lina
    ,
    Vo, Huu Duc
    DOI: 10.1115/1.4065288
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This research proposes and preliminarily analyzes a novel concept to passively reduce the negative impact of deep inlet distortion on the fan of an aero-engine. It consists of placing a row of non-axisymmetric inlet guide vanes (IGVs) just upstream of the fan rotor to induce a spatially varying swirl distribution. The swirl distribution is tailored so as to reduce flow incidence in the distorted flow region and increase it in the undistorted flow region to decrease the fluctuation in aerodynamic force on the fan blades under large inlet distortion that can lead to blade failure, as well as attenuate the negative effect of flow non-uniformity on fan/engine aerodynamic performance. A computational study is carried out on a high-speed (transonic) fan rotor (NASA Rotor 67) from a published distortion study using full-annulus unsteady 3D computational fluid dynamics (CFD) simulations. The asymmetric IGV is designed through a process of manual iterations and CFD simulations to take into account the change in flow redistribution with IGV geometry. The asymmetric IGV design, though not optimized, reduces the aerodynamic force variation amplitude by around two-thirds. Moreover, it allows the fan to recover over half of the loss in total pressure rise due to inlet distortion. The asymmetric IGV is also able to reduce the total pressure distortion at the fan rotor exit. Spanwise analysis indicates that the effectiveness of the asymmetric IGV can be improved on all three metrics if better 3D IGV shaping is performed.
    • Download: (2.313Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Attenuation of Inlet Distortion Effects on Fans Using Asymmetric Inlet Guide Vanes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302631
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorLiu, Lina
    contributor authorVo, Huu Duc
    date accessioned2024-12-24T18:43:35Z
    date available2024-12-24T18:43:35Z
    date copyright5/8/2024 12:00:00 AM
    date issued2024
    identifier issn0889-504X
    identifier otherturbo_146_10_101006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302631
    description abstractThis research proposes and preliminarily analyzes a novel concept to passively reduce the negative impact of deep inlet distortion on the fan of an aero-engine. It consists of placing a row of non-axisymmetric inlet guide vanes (IGVs) just upstream of the fan rotor to induce a spatially varying swirl distribution. The swirl distribution is tailored so as to reduce flow incidence in the distorted flow region and increase it in the undistorted flow region to decrease the fluctuation in aerodynamic force on the fan blades under large inlet distortion that can lead to blade failure, as well as attenuate the negative effect of flow non-uniformity on fan/engine aerodynamic performance. A computational study is carried out on a high-speed (transonic) fan rotor (NASA Rotor 67) from a published distortion study using full-annulus unsteady 3D computational fluid dynamics (CFD) simulations. The asymmetric IGV is designed through a process of manual iterations and CFD simulations to take into account the change in flow redistribution with IGV geometry. The asymmetric IGV design, though not optimized, reduces the aerodynamic force variation amplitude by around two-thirds. Moreover, it allows the fan to recover over half of the loss in total pressure rise due to inlet distortion. The asymmetric IGV is also able to reduce the total pressure distortion at the fan rotor exit. Spanwise analysis indicates that the effectiveness of the asymmetric IGV can be improved on all three metrics if better 3D IGV shaping is performed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAttenuation of Inlet Distortion Effects on Fans Using Asymmetric Inlet Guide Vanes
    typeJournal Paper
    journal volume146
    journal issue10
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4065288
    journal fristpage101006-1
    journal lastpage101006-15
    page15
    treeJournal of Turbomachinery:;2024:;volume( 146 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian