YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identification and Fault Diagnosis of Rolling Element Bearings Using Dimension Theory and Machine Learning Techniques

    Source: Journal of Tribology:;2024:;volume( 146 ):;issue: 009::page 94301-1
    Author:
    Jadhav, Prashant S.
    ,
    Salunkhe, Vishal G.
    ,
    Desavale, R. G.
    ,
    Khot, S. M.
    ,
    Shinde, P. V.
    ,
    Jadhav, P. M.
    ,
    Gadyanavar, Pramila R.
    DOI: 10.1115/1.4065335
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The study presents the classification of bearing fault types occurring in rotating machines using machine learning techniques. Recent condition monitoring demands all-inclusive but precise fault diagnosis for industrial machines. The utilization of mathematical modeling with machine learning may be combined for fine fault diagnosis under different working conditions. The current study presents a blend of dimensional analysis (DA) and a K-nearest neighbor (KNN) to diagnose faults in industrial roller bearings. Vibrational responses are collected for several industrial machines under diverse operational conditions. Bearing faults are identified using the DA model with 3.62% error (avg) and classified using KNN with 98.67% accuracy. Comparing the performance of models with experimental and artificial neural networks (ANN) validated the potential of the current approach. The results showed that the KNN demonstrates superior performance in terms of feature prediction and extraction of industrial bearing.
    • Download: (1.032Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identification and Fault Diagnosis of Rolling Element Bearings Using Dimension Theory and Machine Learning Techniques

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302534
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorJadhav, Prashant S.
    contributor authorSalunkhe, Vishal G.
    contributor authorDesavale, R. G.
    contributor authorKhot, S. M.
    contributor authorShinde, P. V.
    contributor authorJadhav, P. M.
    contributor authorGadyanavar, Pramila R.
    date accessioned2024-12-24T18:40:20Z
    date available2024-12-24T18:40:20Z
    date copyright5/15/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4787
    identifier othertrib_146_9_094301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302534
    description abstractThe study presents the classification of bearing fault types occurring in rotating machines using machine learning techniques. Recent condition monitoring demands all-inclusive but precise fault diagnosis for industrial machines. The utilization of mathematical modeling with machine learning may be combined for fine fault diagnosis under different working conditions. The current study presents a blend of dimensional analysis (DA) and a K-nearest neighbor (KNN) to diagnose faults in industrial roller bearings. Vibrational responses are collected for several industrial machines under diverse operational conditions. Bearing faults are identified using the DA model with 3.62% error (avg) and classified using KNN with 98.67% accuracy. Comparing the performance of models with experimental and artificial neural networks (ANN) validated the potential of the current approach. The results showed that the KNN demonstrates superior performance in terms of feature prediction and extraction of industrial bearing.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIdentification and Fault Diagnosis of Rolling Element Bearings Using Dimension Theory and Machine Learning Techniques
    typeJournal Paper
    journal volume146
    journal issue9
    journal titleJournal of Tribology
    identifier doi10.1115/1.4065335
    journal fristpage94301-1
    journal lastpage94301-12
    page12
    treeJournal of Tribology:;2024:;volume( 146 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian