YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Analytical Adhesion Model for Elastic Contact Electrification

    Source: Journal of Tribology:;2024:;volume( 146 ):;issue: 011::page 111501-1
    Author:
    Xu, Yang
    ,
    Mulvihill, Daniel M.
    ,
    Wu, Yue
    ,
    Li, Xiaobao
    DOI: 10.1115/1.4065770
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Contact electrification is a universal phenomenon that commonly occurs in almost every solid–solid contact pair. The tribo-charges deposited on two surfaces by contact electrification can significantly affect adhesion; however, contact electrification is often overlooked in the study of adhesive contact. Here, we develop an analytical model to investigate electroadhesion during the contact phase between two initially uncharged dielectric surfaces, namely, an elastic parabolic surface and a rigid flat. A system of nonlinear equations is derived to describe the relationship between the indentation, normal load, radius of contact area, and radius of the charged zone using the Barthel–Maugis–Dugdale model (Barthel, 1999, “Modelling the Adhesion of Spheres: When the Form of the Interaction Is Complex, Colloids. Surf., A., 149, pp. 99105.). The analytical results show good agreement with the numerical results of the full self-consistent contact model. When contact electrification leads to a higher tribo-charge density and a larger charged zone, it has a greater impact on the normal traction, interfacial gap, force-approach curves, jump-out, and dissipated energy. The analytical model developed in this study serves as the foundation for advances in rough surface electroadhesive contact and electroadhesion testing, and it sheds light on the usage of adhesive joints in ultra-high vacuum environments and outer space, where contact electrification has a significant impact.
    • Download: (909.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Analytical Adhesion Model for Elastic Contact Electrification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4302475
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorXu, Yang
    contributor authorMulvihill, Daniel M.
    contributor authorWu, Yue
    contributor authorLi, Xiaobao
    date accessioned2024-12-24T18:38:09Z
    date available2024-12-24T18:38:09Z
    date copyright7/30/2024 12:00:00 AM
    date issued2024
    identifier issn0742-4787
    identifier othertrib_146_11_111501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4302475
    description abstractContact electrification is a universal phenomenon that commonly occurs in almost every solid–solid contact pair. The tribo-charges deposited on two surfaces by contact electrification can significantly affect adhesion; however, contact electrification is often overlooked in the study of adhesive contact. Here, we develop an analytical model to investigate electroadhesion during the contact phase between two initially uncharged dielectric surfaces, namely, an elastic parabolic surface and a rigid flat. A system of nonlinear equations is derived to describe the relationship between the indentation, normal load, radius of contact area, and radius of the charged zone using the Barthel–Maugis–Dugdale model (Barthel, 1999, “Modelling the Adhesion of Spheres: When the Form of the Interaction Is Complex, Colloids. Surf., A., 149, pp. 99105.). The analytical results show good agreement with the numerical results of the full self-consistent contact model. When contact electrification leads to a higher tribo-charge density and a larger charged zone, it has a greater impact on the normal traction, interfacial gap, force-approach curves, jump-out, and dissipated energy. The analytical model developed in this study serves as the foundation for advances in rough surface electroadhesive contact and electroadhesion testing, and it sheds light on the usage of adhesive joints in ultra-high vacuum environments and outer space, where contact electrification has a significant impact.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Analytical Adhesion Model for Elastic Contact Electrification
    typeJournal Paper
    journal volume146
    journal issue11
    journal titleJournal of Tribology
    identifier doi10.1115/1.4065770
    journal fristpage111501-1
    journal lastpage111501-10
    page10
    treeJournal of Tribology:;2024:;volume( 146 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian